Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.2, 193-203, 1993
함티탄자철광의 탄소환원에 의한 Rutile 대용체의 제조
The Production of Rutile Substitute from Titaniferrous Magnetite by the Carbothermal Reduction
국내산 함티탄자철광으로부터 rutile대용품을 제조하기 위한 기초자료를 얻기 위해 탄소에 의한 함티탄자철광의 탄소열환원이 실험적으로 조사되었다. 함티탄자철광의 환원을 위한 최적조건은 반응온도 1150℃, 함티탄자철광시료에 대한 환원제 탄소의 당량비 9.0, 반응시간 60min이었다. 그리고 활성탄, pitch, 목탄등이 이 환원반응에서 좋은 환원제로서 작용되었으며, 함티탄자철광과 탄소에 염화제이철의 첨가는 함티탄자철광의 환원속도를 상당히 증가시켰다. 그리고 1100-1150℃ 범위의 두 등온조건하의 환원속도 data를 여러 속도식에 맞추어 본 결과 반응물의 생성물을 통한 확산을 속도결정단계로 볼 수 있는 1-2x/3-(1-x)2/3=kt에 잘 맞았다. 상기의 조건하에서 함티탄자철광 속의 모든 철산화물의 금속철로 환원되었으며, 환원된 함티탄자철광을 자력분리함으로서 금홍석 대용품을 제조할 수 있었다.
Carbothermal reuction of titaniferrous magmetite with carbon was experimentally investigated in order to get fundamental data for the production of rutile substitute from domestic titaniferrous magnatite ore. The proper condition for the reduction of titaniferrous magnetite was as follows : reaction temperature was 1150℃, equivalent ratio of carbon to titaniferrous magnetite was 9.0 and reaction time was 60min. Activated carbon, pitch and charcoal acted as good reducing agent in this reduction. The addition of ferric chloride to titaniferrous magnetite and carbon increased the rate of reduction of titaniferrous magnetite significantly. Reduction rate data under isothermal condition from 1100℃ to 1150℃ were fitted to different rate equations and have been found to be well represented by the equation 1-2x/3-(1-x)2/3=kt, which is developed assuming diffusion of reactants through the product layer is the controlling step. Under above mentioned conditions, all Fe-oxide in the titaniferrous magnetite was reduced to metal Fe. Rutile substitute was prepared from this reduced titaniferrous magnetite by magnetiic separation.
[References]
  1. Lee CT, Sohn HY, You YH, Chem. Ind. Technol., 8(3), 261, 1990
  2. U.S. Bureau of Mines, U.S. Geological Survey: "Mineral Commodity Summeries," U.S. Bereau of Mines, Washington, 1989
  3. Barksdale J, "Titanium its Occurrence, Chemistry and Technology," Ronald Press Co., New York, 1966
  4. Judd BP, Palmer ER, Proc. Aust. Inst. Metal, 247, 23, 1973
  5. Heister NK, Liston ER, Georz D, Light Metals Proc. 103rd AIME Annual Meeting, 2, 401, 1974
  6. Lee CT, Choi HS, Ryoo YH, Saeki Y, HWAHAK KONGHAK, 21(3), 175, 1983
  7. Park YS, Lee CT, Ryoo YH, HWAHAK KONGHAK, 22(4), 181, 1984
  8. Lee CT, Sohn HY, Ind. Eng. Chem. Res., 28(12), 1802, 1989
  9. Kamlet J, U.S. Patent, 3,057,685, 1962
  10. Wright JB, Elger GW, Tress JE, Bell HE, Mineral and Met. Proc., 198, 1985
  11. Neurgankar VG, Gokarn AN, Joseph K, J. Chem. Technol. Biotechnol., 36, 27, 1986
  12. Yamada S, Ind. Miner., 1, 33, 1976
  13. Kahn JA, J. Metal., 33, 1984
  14. Elger GW, Kirby DE, Stickney WA, U.S. Bureau of Mine, RI 7985, 1974
  15. Elger GW, Kirby DE, Stickney WA, U.S. Bureau of Mine, RI 8140, 1976
  16. 박균영, 임석중, "국내 티탄철광에서 티탄소재 개발연구," 동력자원연구소, KR-86-1, 1986
  17. 박균영, 임석중, "국내 티탄철광에서 티탄소재 개발연구," 동력자원연구소, KR-87-33, 1987
  18. Pankratz LB, Stuve JM, Gokoen NA, "Thermodynamic Data for Mineral Technology," U.S. Bureau of Mine, Washington, 1984
  19. Barin I, "Thermochemical Data of Pure Substances," VCH, New York, 1989
  20. Grey IE, Reid AF, Trans. Inst. Min. Metall. Sect. C, 84, 39, 1974
  21. Jones DG, Trans. Inst. Min. Metall. Sect. C, 82, 186, 1973
  22. Ginstling AM, Brounshtein BI, J. Appl. Chem. USSR Eng. Trans., 23, 1327, 1950
  23. Jack J, J. Phys. Chem. Solids, 24, 63, 1963
  24. Rosenqvist T, "Principles of Extractive Metallurgy," pp. 227-229, McGraw-Hill Book Comp., New York, 1974
  25. Othmer DF, Overberger CG, Seaborg GT, Kirk-Othmer Ency. of Chem. Tech., vol. 9, p. 746, John Wiley & Sons, New York, 1980
  26. Galway AK, "Chemistry of Solids," Chapman and Hall Ltd., London, 1967
  27. 윤동석, 양영훈, "철강제련공학," 새한문화사, 서울, 1976
  28. Kim H, HWAHAK KONGHAK, 26(1), 1, 1988
  29. Gupta SK, Rajakumar V, Grieveson P, Metal. Trans., 18B, 713, 1987