Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.2, 169-177, 1993
기-액 교반탱크에서 공동의 특성에 관한 연구
A Study of Cavities Formed behind the Impeller Blades in a Gas-Liquid Agitated Reactor
고성능의 압력 트랜스듀서를 이용하여 교반탱크 내에서 발생되는 압력요동을 운전조건의 변화에 따라 측정하였다. 이 방법을 사용하여 범람과 부하상태의 전이영역을 쉽게 구분할 수 있었으며 타 연구자들의 연구결과와 비교분석하여 신뢰도를 확인할 수 있었다. 물질전달계수와 교반기에 의한 에너지소비를 측정하여 공동의 구조변화와 비교해 본 결과 교반기의 날개뒤에 형성되는 공동의 형태는 물질전달과 교반기의 에너지소비에 큰 영향을 미친다는 것을 알 수 있었다. 압력요동의 스펙트럼분석으로부터 3-3구조를 갖는 공동의 발전정도가 운전조건에 따라 변화됨을 알 수 있었다. 이러한 결과들로부터 기-액 교반탱크에서 물질전달과 에너지소비면에 있어서 최적의 운전조건을 쉽게 얻을 수 있었다.
The transition conditions between flooding and loading were easily found using a miniature hydro-phone which detects the pressure differences in radial outflow between flooding and loading. The reliability of a proposed method was confirmed by comparing the data with an early published correlation equation. The mass transfer coefficients and the power consumptions of impeller depended on the cavity structures formed behind the impeller blades. From the spectrum analysis of pressure fluctuation, it was realised that the degree of progress of 3-3 structured cavity varied with the hange of operating conditions in the 3-3structured cavity region. In view of gas-liquid mass transfer and power consumptions, the optimal operating condition in an agitated reactor could be found by the spectrum analysis of the pressure fluctuations.
[References]
  1. Nienow AW, Wisdom DJ, Middleton JC, 2nd Euro. Conf. on Mixing, pp. F1-1-F1-16, 1977
  2. Biesecker BO, VDI Forschungsheft, 554, 1972
  3. Feijen J, Heijnen JJ, van'tRiet K, Proc. of Chem. Engrs. and KIVI/NIRIA Delft Tech. Univ., 7 May, 1987
  4. Chapman CM, Gibilaro LG, Nienow AW, Chem. Eng. Sci., 37, 891, 1982
  5. Hsi R, Tay M, Bukur D, Tatterson G, Chem. Eng. J., 31, 153, 1985
  6. Hudcova V, Nienow AW, Haozhung W, Houxing L, Chem. Eng. Sci., 42(2), 375, 1987
  7. Hudcova V,Machon V, Nienow AW, Biotechnol. Bioeng., 34, 617, 1989
  8. Ismail AF, Nagase Y, Imon J, AIChE J., 30(3), 487, 1984
  9. Lu WM, Ju SJ, Chem. Eng. Sci., 44(2), 333, 1989
  10. Tatterson GB, Morrison GL, AIChE J., 33(10), 1751, 1987
  11. Warmoeskerken MMCG, Smith JM, Chem. Eng. Sci., 40(11), 2063, 1985
  12. Warmoeskerken MMCG, Smith JM, World Congress III of Chemical Engineering, Tokyo, Vol. III, pp. 350-353, 1986
  13. Bruijin W, van't Riet K, Smith JM, Trans. Inst. Chem Eng., 52, 88, 1974
  14. Van't Riet K, Smith JM, Chem. Eng. Sci., 30, 1093, 1975
  15. Chapman CM, Nienow AW, Cooke M, Middleton JC, Chem. Eng. Res. Des., 61, 82, 1983
  16. Warmoeskerken MMCG,Houwelingen MC, Chem. Eng. Res. Des., 62, 197, 1984
  17. Smith JM, Warmoeskerken MMCG, Zeef E, Biotechnology Process-Scale-up and Mixing, C.S. Ho., J.Y. Oldshue, eds., American Institute of Chemical Engineers, New York, 107-115, 1987
  18. Nagata S, Mixing-Principles and Applications, Kadansha, Tokyo, 1975
  19. Lee HR, Huh YJ, Choi CS, Lee WH, Korean J. Chem. Eng., 9(3), 164, 1992
  20. Atkinson B, Maituna F, Biochemical Engineering and Biotechnology Handbook, The Nature Press, United Kingdom, 1983
  21. Strasberg M, J. Acoust. Soc. Am., 28, 20, 1956
  22. Yoon SW, Crum LA, Prosperetti A, Lu NQ, J. Acoust. Soc. Am., 89(2), 700, 1991