Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.1, 1-8, 1993
고온 원심분리법에 의한 메조페이스 핏치의 상분리
Phase Separation of Mesophase Pitch by a High-Temperature Centrifugal Method
석탄 타르 핏치를 열처리하여 메조페이스(네마틱 액정, 이방성) 핏치를 제조하고, 이들을 고온 원심분리법을 이용하여 메조페이스와 등방성 상으로 분리하였다. 메조페이스 핏치의 상분리 특성과 원심 가속하에서의 새로운 메조페이스의 형성을 관찰하였다. 또한 분리된 메조페이스 및 등방성 상의 밀도를 측정하였다. 메조페이스 핏치는 고온 원심분리법에 의해 쉽게 메조페이스 및 등방성 상으로 분리되었으나, 핏치내의 메조페이스의 함량이 약 82vol%를 넘게 되면 메조페이스와 등방성 상간의 밀도차가 작어져 분리가 곤란하였다. 메조페이스의 형성속도는 원심 가속도의 영향에 의해 증가되었으며, 큰 원심 가속도하에서 분리된 메조페이스일수록 C/H 원자비가 증가되었다. 메조페이스의 밀도는 핏치내의 메조페이스의 함량에 관계없이 1.385g/cm3로 일정한 값을 가졌으며, 등방성 상의 밀도는 열처리가 진행됨에 따라 1,300g/cm3로부터 증가하여 메조페이스의 함량이 57vol%인 것으로부터 분리된 등방성 상의 경우 1,370g/cm3을 보여주었다.
Mesophase(Nematic liquid crystal, anisotropic) pitches which have different amounts of meso-phase were prepared from coal tar pitch, and separated into mesophase and isotropic phase by a high-tempera-ture centrifugal method. Phase separation of mesophase pitch and formation of new mesophase on the influ-ence of centrifugal method. Phase separation of mesophase pitch and formation of new mesophase on the influ-ence of centrifugal acceleration were investigated. Densities of both mesophase and isotropic phase were measured. Mesophase pitch was easily separated into mesophase and isotropic phase by the high-temperature centrifugal method. But in case that the mesophase content in pitch is over about 82vol%, centrifugal separa-tion was very difficult because of very small density difference between mesophase and isotropic phase. The rate of mesophase formation was increased by centrifugal acceleration and C/H atomic ratio of mesophase separated under higher centrifugal accelertion was increased. The density of mesophase was remained con-stant at 1.385g/cm3, and that of isotropic phase was increased from 1.300g/cm3 to 1.370g/cm3(separated from 57vol% mesophase pitch)with increaing of heat treatment time.
[References]
  1. Brooks GD, Taylor GH, Carbon, 3, 185, 1965
  2. Iwata K, Itoh H, Ouchi K, Fuel, 3, 25, 1980
  3. Machnikowski J, Polec L, International Carbon Conference, Bordeauk, France, 376, 1984
  4. Akezuma M, Okuzawa K, Esumi K, Meguro K, honda H, Carbon, 25, 517, 1987
  5. Honda H, Mol. Cryst. Liq. Cryst., 94, 97, 1983
  6. Mochida I, Korai Y, Fujitsu H, Hatano H, HT-HP, 17, 581, 1985
  7. Strehlow RA, U.S. Oak Ridge National Laboratory Report No. ORNL-4622, 135-141, 1970
  8. Chen SH, Diefendorf RT, International Carbon Conference, Bordeauk, France, 382, 1984
  9. Singer Ls, Riffle DM, Cherry AR, Carbon, 25, 249, 1987
  10. Rhee BS, Chung DH, In SJ, Edie DD, Carbon, 29, 343, 1991
  11. Chwastiak S, Lewis RT, Ruggiero JD, Carbon, 19, 357, 1981
  12. Huttinger KJ, Wang JP, Carbon, 29, 433, 1991
  13. Eser S, Jenkins RG, Derbyshire FJ, Carbon, 24, 77, 1986
  14. McCabe WL, Smith JC, Harriot P, "Unit Operation of Chemical Engineering," 4th ed., McGraw-Hill, Co., 1985