Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.30, No.6, 738-748, 1992
혼합전해질 용액에서의 활동도 계수 예측
Prediction of Activity Coefficients of Aqueous Mixed Electrolyte Solutions
간편하면서도 정확하게 혼합전해질 용액의 활동도 계수를 예측할 수 있는 예측식을 제안하였다. 이 관계식에는 추가적인 파라미터의 필요없이 단지 단일전해질 용액에 대한 실험 데이터만이 요구되어 진다. 따라서 본 연구에서는 단일전해질 용액에 대한 활동도 계수를 정확히 측정할 수 있는 장치를 고안 제작하여 사용하였으며 대상물질로는 NaCl, NaBr, KCl를 선택하였으며 측정 온도는 각각 25℃, 30℃, 35℃이었다. 본 연구에서 제안한 관계식을 통하여 얻어진 혼합전해질 용액의 활동도 계수와 기존의 문헌에서 얻어진 실험결과와를 비교 검토하여 그 유용성을 평가해 보았다. 그 결과 25℃, NaCl-NaBr과 KCl-NaBr 혼하전해질 용액의 경우 기존 문헌의 실험결과치와 예측값을 비교하였을 때 ±2%의 오차 범위 내에서 잘 일치함을 알 수 있었다.
A simple but sufficiently accurate predictive equation for the activity coefficients of aqueous mixed electrolyte solutions was developed. The predictive equation needs no additionally adjustable parame-ters and requires only the knowledge of activity coefficients for single electrolyte solutions. Therefore, in this study, a special apparatus was desinged and constructed to measure the activity coefficients of single electrolyte solutions. The salts to be used in this work included NaCl, NaBr and KCl. The measuring tempera-ture were 25℃, 30℃ and 35℃, respectively. The applicability of the predictive equation for the activity coefficients of a mixed-electrolyte solution was evaluated by comparing their estimates of activity coefficients with experimental data. This equation has a predictive accuracy of ±2% when compared with the experimental values for NaCl-NaBr-H2O and KCl-NaBr-H2O system at 25℃.
[References]
  1. Harned HS, Owen BB, The Physical Chemistry of Electrolyte Solutions, 3rd ed., Reinhold: New York, N.Y., 1958
  2. Harvie CE, Eugster HP, Weare JH, Geochim. Cosmochim. Acta, 46, 1603, 1982
  3. Zemaitis JF, Clark DM, Rafal M, Scrivner NC, Handbook of Aqueous Electrolyte Thermodynamics, AIChE, New York, 1986
  4. Ghosh S, Patwardhan VS, Chem. Eng. Sci., 45, 79, 1990
  5. Card DN, Valleau JP, J. Chem. Phys., 52, 6232, 1970
  6. Pitzer KS, J. Phys. Chem., 77, 268, 1973
  7. Pitzer KS, Mayorga G, J. Phys. Chem., 77, 2300, 1973
  8. Pitzer KS, Kim JJ, J. Am. Chem. Soc., 96, 5701, 1974
  9. Meissner HP, Tester JW, Ind. Eng. Chem. Process Des. Dev., 11, 128, 1972
  10. Kusik CL, Meissner HP, AIChE Symp. Ser., 74(173), 14, 1978
  11. Kumar A, Patwardhan VS, Can. J. Chem. Eng., 64, 83, 1986
  12. Patwardhan VS, Kumar A, AIChE J., 32, 1419, 1986
  13. Chen CC, Britt HI, Boston JF, Evans LB, AIChE J., 28, 588, 1982
  14. Gokcen NA, Thermodynamics, Techscience, Inc., Calif., 1975
  15. Gokcen NA, Bureau of Mines RI, 8372, 1979
  16. Patil Kr, Pathak G, Katti SS, J. Chem. Eng. Data, 35, 166, 1990
  17. Covington AK, Lilley TH, Robinson RA, J. Phys. Chem., 72, 2759, 1968
  18. Huston R, Butler JN, Anal. Chem., 41, 1695, 1969