Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.30, No.6, 700-709, 1992
황화수소를 제거한 흡착제의 산화재생반응
Oxidative Regeneration of Sulfided Sorbent by H2S
황화수소를 제거한 흡착제의 산화재생반응에 대한 여러 가지 실험변수들의 영향을 살펴보기 위하여 반응조건을 변화시키면서 배출되는 가스(SO2)를 G.C. 로 분석하였고, 이에 따른 특성을 XRD, SEM, TGA-DTA를 이용하여 분석하였다. 반응온도 750℃에서 반응성이 가장 좋음을 알 수 있었고, DTA-TGA 분석으로 소량 첨가한 Fe2O3 가 중요한 역할을 함을 알 수 있었다. 산소 10vol%까지는 총 SO2의 발생량은 비례적으로 증가하였으나 산소량이 증가할수록 급격히 감소하는 경향을 나타내었으며 총 기체유속이 증가할수록 125ml/mim까지는 총 SO2의 발생량이 선형적으로 증가하였고 100ml/min 이사일 경우 경막 물질전달 저항을 무시할 수 있음을 알 수 있었다. 아울러 크기가 다른 흡착제를 황화반응시킨 후 다시 재생반응을 행한 결과 입자 크기가 작을수록 SO2 발생량이 적었고, 황화반응으로 인한 구조적 변화가 산소확산 장벽으로 작용함을 알 수 있었다. 또한 각각의 온도에서 재생된 흡착제를 650℃에서 다시 황화반응을 수행한 결과 750℃에서 재생된 흡착제가 효율적임을 알 수 있었다.
In order to examine the effects of experimental variables on the oxidative regeneration of sulfided sorbents by H2S, effluent gas(SO2) was analyzed by G.C.with variation of reaction conditions and oxidized sorbents were characterized by XRD, SEM, and TGA-DTA. The reactivity of oxidative regeneration was maximum at 750℃ and it was revealed that the Fe2O3 additive played an important role from the TGA-DTA analysis. Total SO2 uptake was increased linearly as oxygen increased till 10vol% and it was decreased drastically as oxygen increased. When the total flow rate was increased, total SO2 uptake was increased linearly till 125ml/min and thin-film mass transfer resistance was negligible above 100ml/min. From the oxidative regeneration of sulfided sorbents with different particle sizes, it was found that for small particle, the SO2 uptake was little and that the structural change formed during the sulfidation acted as the O2 diffusion barrier. From the sulfidatiion at 650℃ after one sulfidation-regeneration cycle, it was found that regenerated sorbent at 750℃ was effective.
[References]
  1. Gibson JB, Harrison DP, Ind. Eng. Chem. Process Des. Dev., 19, 231, 1980
  2. Tamhankar SS, Wen CY, Chem. Eng. Sci., 36, 1181, 1981
  3. Won S, Sohn HY, Metal. Trans. B, 16B, 163, 1985
  4. Tamhankar SS, Bagajewiz M, Gavalas GR, Ind. Eng. Chem. Process Des. Dev., 25, 429, 1986
  5. Yoo KO, Research Institute of Industrial Science H.Y. Univ., Research Reports, 25, 429, 1986
  6. Prasannan PC, Ramachandran PA, Doraiswamy LK, Chem. Eng. Sci., 40(7), 1251, 1987
  7. Rajaiah J, Dandekar H, Puszynsky J, Degreve J, Hlavacek V, Ind. Eng. Chem. Res., 27, 513, 1988
  8. Lew S, Jothimurugesan K, Stephanopoulos MF, Ind. Eng. Chem. Res., 28, 5, 1989
  9. Sa LN, Focht GD, Ranade PV, Harrison DP, Chem. Eng. Sci., 44(2), 215, 1989
  10. Patrick V, Gavalas GR, Stephanopoulos MF, Jothimurugesan K, Ind. Eng. Chem. Res., 28, 931, 1989
  11. Cannon KJ, Denbigh KG, Chem. Eng. Sci., Apr-May, 145, 1957
  12. Schrodt JT, Best JE, AIChE Symp. Ser., 175(74), 184, 1978
  13. Lee HP, Master Thesis, Hanyang University, 1987
  14. Yumura M, Furimsky E, Ind. Eng. Chem. Process Des. Dev., 24, 1165, 1985
  15. Tamhankar SS, Garimella S, Wen CY, Chem. Eng. Sci., 40, 1019, 1985
  16. Kim JS, Master Thesis, Hanyang University, 1989
  17. Lee YS, Yoo KO, Gavalas GR, Korean J. Chem. Eng., 8(4), 214, 1991
  18. Choi YJ, Lee YS, Kim HT, Yoo KO, HWAHAK KONGHAK, 30(4), 433, 1992
  19. Cullity BD, "Elements of X-ray Diffraction," Addition-Wesley Publishing Company, Inc., Second Edition, p. 102, Massachusetts, 1978
  20. Smykatz-Kloss W, "Differential Thermal Analysis," Springer-Verlag, p. 30, New York, 1974
  21. Chivers T, Hyne JB, Lau C, Int. J. Hydrog. Energy, 5, 499, 1980
  22. Tseng SC, Tamhankar SS, Wen CY, Chem. Eng. Sci., 36, 1287, 1981
  23. Kiyoshi F, Plamer AD, Paul S, Dianex B, Furimsky E, Fuel, 70, 100, 1991
  24. Attar A, Fuel, 57, 201, 1978
  25. Furimsky E, Appl. Catal., 44, 189, 1988
  26. Krishnan GN, Lamoreaux RH, Brittain RD, Wood BJ, DOE Contract No. DE-AC21-83 MC20092
  27. Fogler HS, "Elements of Chemical Reaction Engineering," Presentice-Hall, p. 532, New Jersey, 1986