Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.30, No.6, 649-656, 1992
Poly(Acrylonitrile-EPDM-4-Chlorostyrene)과 스티렌공중합체의 합성과 열분해에 관한 연구
Synthesis and Thermal Degradation of Poly(Acrylonitrile-EPDM-4-Chlorostyrene) and Styrene Copolymers
Ethylene-propylene-diene terpolymer(EPDM)에 대한 4-chlorostyrene과 acrylonitrile의 그라프트 공중합은 반응온도 70℃에서 benzoyl peroxide(BPO)를 개시제로 사용하여 합성하였다. Poly(acrylonitrile-EPDM-4-chlo- rostyrene)(AECS)의 그라프트효율은 tetrahydrofuran(THF)을 용제로 사용했을 때가 가장 좋았고, 그 효율은 76%이었다. AECS의 내열, 난연, 내광 및 내후성을 Poly(acrylonitrile-butadiene-styrene)(ABS), Poly(α-methyl- styrene-acrylonitrile)(α-SAN), Poly(acrylonitrile-EPDM-styrene)(AES)와 비교하였다. 열중량법(TGA)과 시차주사열량법(DSC)에 의한 열분해의 활성에너지 값은 AECS(49-51Kcal/mol)>AES(46-50Kcal/mol)>α-SAN(45-49Kcal/ mol)>ABS(44-46Kcal/mol)의 순서이다. 내광성과 내후성에 대한 순서는 AES>AECS>α-SAN>ABS의 순이었다. AECS의 열분해반응은 400℃ 이하의 온도에서는 주쇄분해반응으로 이루어진다.
The graft copolymer of 4-chlorostyrene and acrylonitrile onto ethylene-propylene-diene terpoly-mer(EPDM) was synthesized with benzoyl peroxide(BPO) as an initiator at 70℃. The maximum grafting efficiency was 76% when tetrahydrofuran(THF) was used as a solvent. The thermal degradation, flame retar-dancy, light resistance and weatherability of AECS were compared with those of Poly(acrylonitrile-butadiene-styrene)(ABS), Poly(α-methylstyene-acrylonitrile)(α-SAN), Poly(acrylonitrile-EPDM-styrene)(AES). The activation energies of thermal degradation determined by thermogravimetry(TGA) and differential scanning colorimetry(DSC) were in the order of AECS(49-51Kcal/mol)>AES(46-50Kcal/mol)>α-SAN(45-49Kcal/mol)>ABS(44-46Kcal/mol). The light resistance and weatherability were in the order of AES>AECS>α-SAN>ABS. The thermal degradation of AECS was considered to happen by main chain scission at an environ-ment temperature below 400℃.
[References]
  1. Moon DJ, Kim BC, Kim DK, Seul SD, Sohn JE, J. Korean Ins. Rubber Ind., 23, 289, 1988
  2. Morimoto M, J. Appl. Polym. Sci., 26, 261, 1981
  3. Morimoto M, Sanijiki H, Furuta M, U.S. Patent, 3,904,709, 1975
  4. Morimoto M, Sanijiki H, Oyamada T, U.S. Patent, 3,984,496, 1976
  5. Friedman HL, J. Polym. Sci. C: Polym. Lett., 6, 183, 1963
  6. Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881, 1965
  7. Craver CD, Polymer Characterization, American Chemical Society, New York, 297, 1983
  8. Thakkar JR, Patel RG, Patel VS, Eur. Polym. J., 23, 10, 1987
  9. Fukuda T, Ma YD, Inaki H, J. Polym. Sci., 14, 705, 1982
  10. Marvel CS, Schertz LL, J. Am. Chem. Soc., 65, 2050, 1943
  11. Odian G, Rossi A, Trahtenberg EN, J. Polym. Sci., 42, 575, 1960
  12. Odian G, Sobel M, Rossi A, Klein R, J. Polym. Sci., 55, 663, 1961
  13. Odian G, Acker T, Sobel M, J. Appl. Polym. Sci., 7, 245, 1963
  14. Brandrup J, Immergut EH, Polymer Handbook, 2nd ed., Wiley, New York, 1975
  15. Tang WK, Niell WK, J. Polym. Sci. C: Polym. Lett., 6, 65, 1964
  16. Speranskaya NI, Opt. Spectroscopy, 7, 424, 1959
  17. Schofield F, Natl. Paint, Varnish, Lacquer Assoc. Scient. Soc. Circular, 644, 1943