Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.30, No.6, 641-648, 1992
크기가 다른 두 입자계의 최소유동화속도 결정 및 유동화 특성
Minimum Fluidization Velocity and Fluidization Characteristics of Binary Particle System
내경이 0.109m인 기-고유동층에서 큰 입자(0.175mm)로 이루어진 계에 크기가 작은 입자(0.359mm, 0.194mm)의 분율을 변화시킴에 따라 나타나는 층분리 현상을 차압전달기로 측정하여 압력요동의 평균압력과 표준편차를 이용하여 분석하였다. 크기가 작은 입자의 분율에 따른 최소유동화속도 변화를 규명하였고, 또한 층내에서 일어나는 기포의 운동과 입자혼합을 표준편차로서 해석하였다. 실험결과 균일입자로 이루어진 계에서만 적용되었던 압력요동의 표준편차와 유속과의 관계로부터 최소유동화속도를 결정하는 방법은 크기가 다른 두 입자계까지 적용될 수 있음을 알 수 있었으며, 입자크기 차이에 의한 층분리 현상을 압력요동으로 예측할 수 있다.
Segregation phenomena occurred from variations of fine particle fractions(0.359mm, 0.194mm) in a 0.109m ID fluidized bed of coarse particle(0.715mm) were measured by a differential pressure transdu-cer and were analyzed by the standard deviation and mean pressure of pressure fluctuation. The variations of minimum fluidizatiion velocity according to fine particle fractions were investigated and the fluidized bed behaviors such as bubble motion and particle mixing were interpreted by the standard deviation. The method for determination of a minimum fluidization velocity from the linear relationship between standard deviation and air velocity which has been applied only for the uniform sized particle system could also be applied in the binary syste. segregation phenomena occurred by the difference of particle size could also be predic-ted by the pressure fluctuations.
[References]
  1. Fan LT, Ho TC, Hiraoka S, Walawender WP, AIChE J., 27, 388, 1981
  2. Fan LT, Ho TC, Walawender WP, AIChE J., 29, 33, 1983
  3. Lirag RC, Littman H, AIChE Symp. Ser., 67, 11, 1971
  4. Verloop J, Heertjes PM, Chem. Eng. Sci., 29, 1035, 1974
  5. Puncochar M, Drahos J, Cermak J, Selucky K, Chem. Eng. Commun., 35, 81, 1985
  6. Park D, Lee JK, Fuel, 68, 1180, 1989
  7. Brunner CR, Environ. Prog., 8, 163, 1989
  8. Carsky M, Pata J, Vesely V, Hartman M, Powder Technol., 51, 237, 1987
  9. Geklart D, Powder Technol., 7, 285, 1973
  10. Darton RC, LaNanze RD, Davidson JF, Harrison D, Trans. Inst. Chem. Eng., 55, 274, 1977
  11. Cheremisinoff NP, "Encyclopedia of Fluid Mechanics," 4, Gulf Publ., Huston, 853, 1986
  12. Drahos J, Cermak J, Schugerl K, Chem. Eng. Commun., 65, 4, 1988
  13. Hong SC, Jo BR, Doh DS, Choi CS, Powder Technol., 60, 215, 1990
  14. Peeler JPK, Huang JR, Chem. Eng. Sci., 44, 1113, 1989
  15. Kumar A, SenGupta P, Ind. J. Technol., 12, 225, 1974
  16. Thonglimp V, Docteur-ingenieur Thesis, Institut National Polytechnique, Toulouse, 1981
  17. Goosens WRA, Dumont GL, Spaepen GL, Chem. Eng. Prog., 67, 38, 1971
  18. Chiba S, Chiba T, Nienow AW, Kobayashi H, Powder Technol., 22, 255, 1979
  19. Cheung L, Nienow AW, Rowe PN, Chem. Eng. Sci., 29, 1301, 1974
  20. Beeckmans JM, Stahl B, Powder Technol., 53, 31, 1987
  21. Donsi G, Ferrari G, Formisani B, Powder Technol., 55, 153, 1988
  22. Nienow AW, Rowe PN, Chiba T, AIChE Symp. Ser., 74, 45, 1978