Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.30, No.5, 586-593, 1992
Zirconia에 담지된 산화크롬 촉매의 구조 및 열적 성질
Structure and Thermal Properties of Chromium Oxide Supported on Zirconia
분말의 Zr(OH)4를 (NH4)2CrO4 수용액에 함침시킨 후 공기 중에 소성하여 zirconia에 담지된 산화크로 축매를 제조하였다. 제조된 촉매의 구조와 열적 성질을 XRD와 DT-TGA로 연구한 결과 산화크롬이 존재함으로 말미암아 zirconia의 무정형에서 tetragonal phase 그리고 tetragonal phase에서 monoclinic phase로 되는 상전이가 크롬함량에 비례하여 억제되었다. 산화크롬과 zirconia간의 상호작용으로 산환크롬은 zirconia 표면에 잘 분산되었으며, 그 결과로 α-Cr2O3 결정은 900℃이상의 소성온도에서만 관찰되었다.
Chromium oxide/zirconia catalysts were prepared by dry impregnation of powdered Zr(OH)4 with aqueous solution of (NH4)2CrO4 followed by calcining in air. The structures and thermal properties of prepared catalysts were investigated using XRD and DT-TGA. On the basis of the results obtained from X-ray diffraction and DTA for chromium oxide/zirconia, it was suggested that the presence of chromium oxide delayed the transitions of zirconia from amorphous to tertagonal phase and from tetragonal to monoclinic phase in proportion to the chromium oxide content. Chromium oxide was well dispersed on the surface of zirconia due to the strong interaction between chromium oxide and zirconia, and consequently α-Cr2O3 crystalline was observed only at calcination temperature above 900℃.
[References]
  1. Hogan JP, J. Polym. Sci., 8, 2637, 1970
  2. Holm VCF, Clark A, J. Catal., 11, 305, 1968
  3. Clark A, Catal. Rev.-Sci. Eng., 3, 145, 1969
  4. McDaniel MD, Adv. Catal., 33, 47, 1985
  5. Shelef M, Otto K, Gandhi H, J. Catal., 12, 361, 1968
  6. Kazansky VB, Boreskov GK, Kinet. Katal., 5, 434, 1964
  7. Myers DL, Lunsford JH, J. Catal., 99, 140, 1986
  8. Sohn JR, Han YH, HWAHAK KONGHAK, 26(4), 445, 1988
  9. Beck DD, Lunsford JH, J. Catal., 68, 121, 1981
  10. Eley DD, Rochester CH, Scurrell MS, J. Chem. Soc.-Faraday Trans., 69, 660, 1973
  11. Matsunaga Y, Bull. Chem. Soc. Jpn., 30, 868, 1957
  12. Rasko J, Solymosi F, J. Mol. Catal., 3, 305, 1977
  13. Iwasawa Y, Chiba T, Ito N, J. Catal., 99, 95, 1986
  14. Damyanov D, Vlaev L, Bull. Chem. Soc. Jpn., 56, 1841, 1983
  15. Peri JB, J. Phys. Chem., 78, 588, 1974
  16. Poole P, Kehl WL, MacIver DS, J. Catal., 1, 407, 1962
  17. Cimino A, Cordisch D, Febbraro S, Gazzoli D, Indovina V, Occhiuzzi D, Indovina V, Occhiuzzi M, Valigi M, J. Mol. Catal., 55, 23, 1989
  18. Ghiotti G, Chiorino A, Boccuzzi F, Surf. Sci., 251-252, 1110, 1991
  19. Livage J, Doi K, Mazieres C, J. Am. Ceram. Soc., 51, 349, 1968
  20. Lee BY, Inoue Y, Yasumori I, Bull. Chem. Soc. Jpn., 54, 13, 1981
  21. Hertl W, Langmuir, 5, 96, 1989
  22. Tseng SC, Jackson NJ, Ekerdt JG, J. Catal., 109, 284, 1988
  23. Abe H, Maruya K, Domen K, Onishi T, Chem. Lett., 1875, 1984
  24. He MY, Ekerdt JG, J. Catal., 90, 17, 1984
  25. Jackson NB, Ekerdt HG, J. Catal., 101, 90, 1986
  26. Onishi T, Abe H, Maruya K, Domen K, J. Chem. Soc.-Chem. Commun., 617, 1985
  27. Silver RG, Hou CJ, Ekerdt JG, J. Catal., 118, 400, 1989
  28. Sohn JR, Jang HJ, J. Mol. Catal., 64, 349, 1991
  29. Gavalas GR, Phichitkul C, Voecks GE, J. Catal., 85, 65, 1984
  30. Bruce L, Hope GJ, Mathews JF, Appl. Catal., 4, 353, 1982
  31. Sohn JR, Kim HW, J. Mol. Catal., 52, 361, 1989
  32. Torralvo MJ, Alario MA, Soria J, J. Catal., 86, 473, 1984
  33. Best SA, Squires RG, Walton RA, J. Catal., 47, 292, 1977
  34. Garvie RC, J. Phys. Chem., 69, 1238, 1965
  35. Eischens RP, Selwood PW, J. Am. Chem. Soc., 70, 2271, 1948