Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.30, No.4, 491-498, 1992
양모에서 초임계 이산화탄소에 의한 Wool Grease의 탈착
Desorption of Wool Grease from Greasy Wool with Supercritical Carbon Dioxide
초임계 상태의 순수한 이산화탄소를 사용하여 양모에 부착되어 있는 wool grease의 탁착특성을 온도 313.2-333.2K, 압력 15-35MPa 범위의 초임계 영역에서 이산화탄소의 일정 유량에 대해 실험 및 이론적으로 검토되었다. Wool grease의 탈착속도는 압력이 증가할수록 현저하게 증가하였고, 온도가 증가할수록 일반적으로 감소되었으며, 유량이 증가될수록 증가되었으나 최종탈착량은 주어진 조건에서 거의 일정하였다. Wool grease의 탈착은 313.2K, 35MPa에서 가장 높은 평형탈착율인 약 80%를 나타내었지만, 가장 바람직한 탈착율(95-96%)은 실험범위의 조건에서 얻을 수 없었다. 고정층에서 물질수지에 의한 탈착속도를 표현하기 위한 모델이 제시되었다. 탈착속도에 대한 실험 데이터는 제안된 모델에 잘 일치되었으며 탈착속도 정수 k1은 일정한 압력에서는 온도에 관계없이 거의 일정한 값을 나타내었으며, k2는 탈착속도가 빠를수록 증가되었다.
The desorption characteristics of wool grease on wool with supercritical carbon dioxide were studied experimentally and theoretically at the pressure up to 35MPa, the temperature range of 313.2-333.2K and constant flow rate of carbon dioxide. desorption rates of wool grease were found to increase markedly with increasing pressure, to decrease generally with increasing temperature and to increase with increasing flow rate but the final desorption amounts were constant. The highest desorption amount of wool grease was 80% at the temperature of 313.2K and the pressure of 35MPa with the flow rate of carbon dioxiide of 440ml(STP)/ min, but desirable desorption amount(95-96%) was not found at the experimental condition. The experimental data were well correlated to desorption rate model, that was proposed by appling the material balance in fixed bed. The desorption rate constants in the model, k1 was nearly constant at constant pressure and k2 was increased with increasing desorption rate.
[References]
  1. 정순영, "양모방적," 학문사, 1977
  2. AWP Holding Limited(Australia) "The De Smet Wool Scouring Process,", 1987
  3. Motiuk K, JAOCS, 56(2), 91, 1979
  4. Motiuk K, JAOCS, 56(6), 651, 1979
  5. Motiuk K, JAOCS, 57(4), 145, 1980
  6. Kurnik RT, Holla SJ, Reid RC, J. Chem. Eng. Data, 26, 47, 1981
  7. Adachi Y, Benjamin CY, Fluid Phase Equilib., 14, 147, 1983
  8. Mchugh MA, Paulaitis JM, J. Chem. Eng. Data, 25, 326, 1980
  9. Tolley WK, Altringer PB, Seidel DC, Sep. Sci. Technol., 22(2-3), 1087, 1987
  10. Sutikno T, Himmelstein KJ, Ind. Eng. Chem. Fundam., 22, 420, 1983
  11. Fleck RD, Kirwan DJ, Hall KR, Ind. Eng. Chem. Fundam., 12(1), 95, 1973
  12. Tan CS, Liou DC, AIChE J., 35(6), 1029, 1989
  13. Nelder JA, Mead R, Comput. J., 7, 308, 1965