Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.30, No.4, 467-472, 1992
고정화 효소에 의한 섬유소 가수분해
Cellulose Hydrolysis by Immobilized Enzyme
Trichoderma reesei QM 9414로부터 생산된 셀룰라이제를 Ca-alginate로 고정화하여 안정도를 높임으로써 셀룰로오스를 가수분해하는데 장기간 사용할 수 있도록 하였다. 고정화 효소의 역가는 Na-alginate 와 CaCl2 용액의 농도가 각각 3%(w/v), 0.4M일 때 가장 좋은 결과를 보여준다. 고정화 겔 비드의 강도는 Na-alginate의 농도가 증가함에 따라 증가하였고, CaCl2 용액의 농도에는 무관하였다. 고정화 효소는 효소용액을 사용했을 때보다 약 3배정도의 높은 역가를 나타내었다. 또한 β-Glucosidase를 고정화하여 첨가했을 때 원래의 가수분해 반응보다 환원당 및 포도당의 생산성을 3배 이상 증가시켰다.
The immobilization of cellulase was studied to stabilize the enzyme and thus increase the efficien-cy of the hydrolysis of cellulose. The cellulase induced from the fungus Trichoderma reesei QM 9414, was immobilized on Ca-alginate bead. The experiments were performed in order to find the optimum conditions for immobilization and understand the properties of imobilized enzyme systems. Experimenatal results show-ed that optimal concentrations of Na-alginate and CaCl2 providing the highest activity of immobilized enzyme systems, were 3%(w/v) and 0.4m, respectively. The gel strength of the immobilized bead was increased in proportion to the concentration of Na-alginate but independent of the concentration of CaCl2. The activity of the immobilized enzyme system was enhanced three folds compared to free enzyme system. Also, the productivities of reducing sugar and glucose were increased three folds by the addition of immobilized β-glucosidase in comparison with free β-glucosidase system.
[References]
  1. Sternberg D, Dorval S, Biotechnol. Bioeng., 21, 181, 1979
  2. Mandels M, Medeiros JE, Andreotti RE, Bissett FH, Biotechnol. Bioeng., 23, 2009, 1981
  3. Ladisch MR, Lin KW, Volch M, Tsao GT, Enzyme Microb. Technol., 5, 82, 1983
  4. Ladisch MR, Tsao GT, Enzyme Microb. Technol., 8, 66, 1986
  5. Parisi F, Adv. Biochem. Eng., 38, 53, 1989
  6. Mandels M, Biotechnol. Bioeng., 5, 81, 1975
  7. Montecourt BS, Eveleigh D, Proc. 2nd Bioconv. Symp., Troy, N.Y., p. 613, 1978
  8. Mandels M, Reese ET, J. Bacteriol., 79, 816, 1959
  9. Messing RA, "Comprehensive Biotechnology," Vol. 2, Ch. 12, p. 203, M. Moo-Young (Ed.), Pergamon Press Ltd., 1985
  10. Pifferi PG, Tramontini M, Malacarne A, Biotechnol. Bioeng., 33, 1258, 1989
  11. Fujikawa S, Yokota T, Koga K, Appl. Microbiol. Biotechnol., 28, 440, 1988
  12. Roy SK, Raha SK, Dey SK, Chakrabarty SL, Enzyme Microb. Technol., 11, 431, 1989
  13. Jeong EJ, Lee SH, Lee YH, Korean J. Biotechnol. Bioeng., 5, 141, 1990
  14. Miller GL, Anal. Chem., 31, 426, 1959
  15. Bergmeyer HU, "Method of Enzymatic Analysis," Vol. 1, p. 457, 2nd Ed., Academic Press, NY, 1974
  16. Lowry PH, Rosebrough NJ, Farr AL, Randall RJ, J. Biol. Chem., 193, 265, 1951
  17. Hicks GP, Updike SJ, Anal. Chem., 38, 726, 1966
  18. Chrambach A, Rodbard D, Science, 172, 440, 1971
  19. Miron T, Degani Y, Biochim. Biophys. Acta, 212, 362, 1970
  20. Tosa T, Sato T, Mori T, Chibata I, Biotechnol. Bioeng., 21, 1697, 1979