Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.30, No.3, 328-338, 1992
알칼리형 연료전지의 수소극 Raney Ni 촉매에 관한 연구
The Study on Raney Ni Used as the Catalyst of Hydrogen Electrode in Alkaline Fuel Cell
평균 입자 크기와 겉보기 밀도가 작은 Ni 촉매가 우수한 촉매능을 보여주었으며, 이 Ni로 제조된 Raney Ni이 역시 뛰어난 촉매능을 나타내었다. Raney Ni의 제조온도로는 750℃가 적당하였다. CO화학흡착과 벤젠의 수소화 반응에서는 Ni과 Raney Ni의 최적 PTFE 혼합량은 각각 10wt%, 5wt%였으나, 전극방응 실험에서 Raney Ni의 경우는 10wt%이었다. Raney Ni의 촉매능은 수소 활성화처리에 의해 상당한 영향을 받았다.
Ni with a small average particle size and apparent density showed a good catalytic activity, and Raney Ni prepared from these Ni powders also exhibited an excellent catalytic activity. It was found that the best preparation temperature of Raney Ni catalyst was about 750℃. For the chemisorption of CO and the hydrogenation of benzene, the optimal weight ratio of PTFE-binder to Ni and Raney Ni was 10wt% and 5wt%, respectively. For electrode reaction experiments, however, 10wt% PTFE-bonded Raney Ni hydro-gen electrode showed the best electrode performance. The catalytic activity of Raney Ni was considerably affected by the treatment of H2 activation.
[References]
  1. Appleby AJ, Foulkes FR, "Fuel Cell Handbook," p. 10, Van Nostrand Reinhold, New York, NY, 1989
  2. Justi E, Kalberlah A, "Fuel Cel System-II," p. 1-12, American Chemical Society, Washington, D.C., 1969
  3. Strasser K, J. Electrochem. Soc., 127, 2172, 1980
  4. Watanabe M, Tomikawa M, Motoo S, J. Electroanal. Chem., 182, 193, 1985
  5. Watanabe M, Tomikawa M, Motoo S, J. Electroanal. Chem., 195, 81, 1985
  6. Kenjo T, Bull. Chem. Soc. Jpn., 54, 2553, 1981
  7. Vetter KJ, "Electrochemical Kinetics," p. 522, Academic Press, 1967
  8. Erdey-Gruz T, Volmer M, Z. Phys. Chem., 150(A), 203, 1930
  9. Ross PN, Stonehart P, J. Res. Inst. Catal., 22, 22, 1974
  10. Vogel W, Lundquist J, Ross PN, Stonehart P, Electrochim. Acta, 20, 79, 1975
  11. Lohrengel G, Baerns M, Appl. Catal., 1, 3, 1981
  12. Aben PC, Platteeuw JC, Stouthamer B, Recl. Trav. Chim. Pays-Bas, 89, 449, 1970
  13. Mund K, Richter G, Von Sturm F, J. Electrochem. Soc., 124, 1, 1977
  14. Tomida T, Nakabayashi I, J. Electrochem. Soc., 136(11), 3296, 1989
  15. Dousek EP, Jansta J, Collct. Czech. Chem. Commun., 36, 2115, 1971
  16. LePage JF, Cosyns J, Courty P, Freund E, Franck JP, Jacquin Y, Juguin B, Marcilly C, Martino G, Miquel J, Montarnal R, Sugier A, vanLandeghem H, "Applied Heterogeneous Catalysis," p. 300-301, Editions Technip, Paris, 1978
  17. Lemaitre JL, Menon PG, Delannay F, "Characterization of Heterogeneous Catalysts," (Delannay, F., Eds.), p. 324, Marcel Dekker, New York, NY, 1984
  18. O'Neill LE, Yates DJ, J. Phys. Chem., 65, 901, 1961
  19. Bartholomew CH, Pannell RB, J. Catal., 65, 390, 1980
  20. Reid RL, Prausnitz JM, Poling BE, "The Properties of Gases and Liquids," 4th ed., p. 212, McGraw-Hill, New York, NY, 1986
  21. Taylor A, Floyd RW, J. Inst. Metals, 81, 25, 1952
  22. Jenseit W, Khalil A, Wendt H, "Proc.-Electrochem. Soc. 1989, 89-14," (Proc. Symp. Fuel Cells, 1989), p. 234-51, The Electrochemical Society, Inc., 1989
  23. Winsel A, Chem. Ing. Tech., 43, 191, 1971
  24. Fouilloux P, Martin GA, Renouprez AJ, Moraweck B, Imelik B, Prettre M, J. Catal., 25, 212, 1972
  25. Primet M, Dalmon JA, Martin GA, J. Catal., 46, 25, 1977
  26. Rochester CH, Terrell RJ, J. Chem. Soc.-Faraday Trans., 73, 609, 1977
  27. Badilla-Ohlbaum R, Neuburg HJ, Graydon WF, Phillips MJ, J. Catal., 47, 273, 1977
  28. Fouilloux P, Appl. Catal., 8, 1, 1983
  29. Freel J, Pieters WJM, Anderson RB, J. Catal., 14, 247, 1969
  30. Tracey VA, Powder Metallurgy, 2, 45, 1979