Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.30, No.3, 310-317, 1992
식물 Dahlia Pinnata 구근에서의 에탄올 생산을 위한 연구
Ethanol Production by Sugars Derived from Dahlia Pinnata Tubers
바이오매스를 이용한 대체 에너지의 개발로서 식물 다알리아 구근에 포함된 이눌린을 탄소원으로 하여 에탄올 발효를 시도하였다. 다알리아 구근의 추출액을 배지로 하여 효모 Kluyveromyces fragilis CBS 1555 및 Saccharo-myces cerevisiae ATCC 4126에 대한 에탄올 발효의 최적조건을 결정하고, 회분발효의 속도론적 결과를 나타내었다. 다알리아 구근의 시료를 85℃에서 1단계 추출한 착즙의 농도는 총당으로 표현하였을 때 90-203g/l의 당을 포함하였다. S. cerevisiae 세포를 Ca-alginate로 고정화하여 충전층 반응기에 의하여 다알리아 구근의 추출액으로부터 연속적으로 에탄올 발효를 시도하였다. 희석율 0.1hr-1에서 에탄올 수율은 0.92g-EtOH/g-Sug-ar이었고, 희석율 0.4hr-1에서는 0.57g-EtOH/g-Sugar로 변화하였다. 희석율 0.18hr-1에서 최대 에탄올 수율 0.98g-EtOH/g-Sugar로써 35일간 연속발효를 시행한 결과 24일까지는 에탄올 농도가 100-126g/l를 유지될 수 있었다.
This study examines the potential of dahlia pinnata as an alternative energy source for ethanol. Experimental results are presented as batch fermentation kinetics for two strains of Kluyveromyces fragilis CBS 1555 and Saccharomyces cerevisiae ATCC 4126 grown on the extract derived from the tubers of Dahlia pinnata. In the first extraction stage, the range of sugar conentration was 90-203g/l in terms of total sugars. Saccharomyces cerevisiae cells were immobilized in Ca-alginate beads and used in a packed-bed bioreactor for the continuous production of ethanol from the extract of dahlia pinnata tubers. Ethanol yield varied from 0.92g-EtOH/g-Sugar utilized at D=0.1hr-1 to 0.57g-EtOH/g-Sugar utilized at D=0.4hr-1. The results presen-ted in this study show that immobilized cells of S. cerevisiae have a high potential for fuel ethanol production from Dahlia pinnata tubers. the immobilized cell bioreactor was operated continuously at a constant dilution rate of 0.18hr-1 for 35 days. The maximun ethanol yield was found to be 0.98g-EtOH/g-Sugar.
[References]
  1. Ferchak JD, Pye KE, Sol. Energy, 26, 9, 1981
  2. Margaritis A, Bajpai P, Canell E, Biotechnol. Lett., 3, 595, 1981
  3. Margaritis A, Bajpai P, Biotechnol. Bioeng., 27, 273, 1985
  4. Margaritis A, Bajpai P, Biotechnol. Bioeng., 24, 1473, 1982
  5. Lindeman LR, Rocchiccioli C, Biotechnol. Bioeng., 21, 1107, 1979
  6. 한국동력자원연구소(감수: 이영재), 월간 신·재생 에너지기술동향, 5(6), 20, 1991
  7. 김정희, 바이오에너지기술(제 4회 생물화공 심포지움), 41, 1989
  8. Yanovsky E, Kingsbury RM, J. Am. Chem. Soc., 55, 3658, 1933
  9. Bacon JD, Edelman J, Biochemistry, 48, 114, 1951
  10. Fleming SE, Grool Wassink JWD, CRC Critical Reviews in Food Science and Nutrition, 12(1), 1, 1979
  11. Whistler RL, Smart CL, Academic Press Ing. Publishers, N.Y., 1953
  12. Weiner J, J. Inst. Brew., 84, 222, 1978
  13. Somogyi M, J. Biol. Chem., 195, 19, 1952
  14. Levenspiel O, "Chemical Reaction Engineering," Wiley & Sons, Inc., New York, 1962
  15. Margaritis A, Bajpai P, Biotechnol. Bioeng., 24, 1483, 1982
  16. Margaritis A, Bajpai P, Process Biochem., 6, 86, 1986
  17. Christensen LD, Fulmer EI, U.S. Patent, 2,085,003, 1937
  18. Rosa MF, Novais JM, Biotechnol. Bioeng., 31, 705, 1988
  19. Mariorella BL, Blanch HW, Wilke CR, Biotechnol. Bioeng., 26, 1003, 1984
  20. Holzberg I, Finn RK, Steinkraus KH, Biotechnol. Bioeng., 9, 413, 1967
  21. Loewus FA, Anal. Chem., 24, 219, 1952
  22. Byun SM, Nahm BH, J. Food Sci., 43, 1871, 1978
  23. Kim WY, Byun SM, Enzyme Microb. Technol., 4, 239, 1982
  24. Guiraud JP, Bajon AM, Enzyme Microb. Technol., 5, 185, 1983
  25. Finn K, Andrew JD, Biotechnol. Bioeng., 27, 1335, 1985