Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.30, No.2, 253-260, 1992
NADH 동시재생을 이용한 실관효소반응기에서의 L-leucine생산
L-leucine Production with Simultaneous NADH Regeneration in a Hollow Fiber Enzyme Reactor
실관반응기에 주반응효소(leucine dehydrogenase), 재상반응효소(formate dehydrogenase), 그리고 고분자 조효소 유도체(dextran-NAD+)를 고정화시켜 연속적으로 루이신을 생산하였다. 실관반응기의 루이신 생산은 34시간 유지되었고 최고 전화율이 83%, 평균전화율이 76%였다. Space time yield는 78.2g/L/d(또는 596mmol/L/d)의 높은 값을 얻었는데 이러한 높은 space time yield 값은 발효공정으로는 얻기 힘든 효소반응기의 장점이라 하겠다. 효소반응시 조효소 유도체의 retention coefficient는 평균적으로 87%, 최고 91%이었고, resi-dence time은 평균적으로 1시간 정도를 유지하였다. 조효소유도체의 turn over number는 8500을 넘어섰다. 결과적으로 조효소재생방법을 사용하지 않은 경우의 루이신 kg생산당 NAD+비용을 재생방법에 의하여 약 10,000배로 줄여, 산화환원효소의 산업적 응용의 가장 큰 문제점이었던 조효소 비용문제를 해결하였다.
L-leucine was produced from α-ketoisocaproate in a hollow fiber enzyme reactor, where leucine degydrogenase(L-leucine:NADH oxidoreductase, EC1.4.1.9), formate dehydrogenase(formate:NAD+ oxido-reductase, EC1.2.1.2), and NAD+ covalently bound to water-soluble dextran(dextran-NAD+) were used as the catalytic enzyme, coenzyme regeneration enzyme, and enlarged coenzyme, respectively. The continuous-production of L-leucine in a hollow fiber enzyme reactor for 34hrs resulted in a space-time yield of 78.2g/L/d(or 596mmol/L/d) with a mean substrate conversion of 76%. After 34hrs, the reaction did not continue due to loss of enzyme activity. The turnover number of cofactor-retio of moles of product to moles of NAD(H)-exceeded 8,500. The cofactor regeneration scheme for NADH had been successful to the extent that cofactor cost was no longer dominant in the L-leucine production.
[References]
  1. Enzyme Nomenclature: Recommendations of the International Union of Pure and Applied Chemistry and the International Union of Biochemistry, Academic Press, New York, 1979
  2. Sigma price list, 1991
  3. Chenault HW, Whitesides GM, Appl. Biochem. Biotechnol., 14, 147, 1987
  4. Laval JM, Bourdillon C, Moiroux J, Biotechnol. Bioeng., 30, 157, 1987
  5. Willner I, Mandler D, Enzyme Microb. Technol., 11, 467, 1989
  6. Nath PK, Izumi Y, Yamada H, Enzyme Microb. Technol., 12, 28, 1990
  7. Gu KF, Chang TMS, Biotechnol. Appl. Biochem., 12, 227, 1990
  8. Campbell J, Chang TMS, Biochem. Biophys. Res. Commun., 69, 562, 1976
  9. Yamazaki Y, Maeda H, Suzuki H, Biotechnol. Bioeng., 18, 1761, 1976
  10. Guagliard A, Raia CA, Rella R, Buckmann AF, Dauria S, Rossi M, Bartolucci S, Biotechnol. Appl. Biochem., 13, 25, 1991
  11. KulaMR, Wandrey C, Methods Enzymol., 136, 9, 1987
  12. Ohshima T, Wandrey C, Kula MR, Soda K, Biotechnol. Bioeng., 27, 1616, 1985
  13. Leuchtenberger W, Karrenbauer M, Plocker U, Ann. N.Y. Acad. Sci., 434, 78, 1983
  14. Kajiwara S, Maeda H, Agric. Biol. Chem., 51, 2873, 1987
  15. Blatt WF, Membrane Separation Technology, Flin, J.E. (ed.), Plenum Press, New York, p. 47, 1970
  16. Kim BS, Chang HN, Bioseparation, 2, 23, 1991
  17. Charm SE, Wong BL, Biotechnol. Bioeng., 12, 1103, 1970