Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.30, No.2, 172-181, 1992
사염기 황산납의 첨가에 의한 밀폐형 납축전지의 노화 억제
The Effect of Tetrabasic Lead Sulfate on the Aging of VRLA(Valve Regulated Lead-Acid) Batteries
밀폐형 납축전지의 양극 활물질의 출발물질로서 산업 현장에서 널리 쓰이는 연분과 화학적으로 합성한 사염기 황산납 중 어느쪽을 사용하는가에 따라 숙성 및 화성후의 양극 형상과 물성이 확연히 달라지고 이것은 나아가 충방전시 양극 활물질의 노화 양식과 정도에 대하여 밀접한 관계가 있음이 관찰되었다. 연분의 입자 크기는 1㎛ 이하이며 숙성, 화성의 단계를 거친 후의 형상은 ∼0.2㎛의 입자들로 구성된 꽃송이 형태였고, 이들 입자간의 결합력은 0.4kg이었다. 반면 화학적으로 합성한 사염기 황산납은 침상 모양을 가지며 크기는 30-50㎛였다. 이들은 화성후에도 초기의 형태와 크기를 유지하였으며 이들간의 결합력은 50%의 사염기 황산납을 함유하는 경우 1.2kg 그리고 100%인 경우에는 1.7kg이었다. 연분을 사용한 시험전지의 충방전 싸이클 수명은 80%의 방전심도에서 약 220회였으며 노화는 양극 활물질의 미세화와 재배치에 의한 Coralloid 조직의 형성에 의한 것이었다. 사염기 황산납을 사용한 경우 활물질의 미세화는 크게 억제되었으며 이에 따라 싸이클 수명도 50%의 사염기 황산납을 함유하는 경우 약 800회 그리고 100%의 경우에는 약 1,000회였다. 이들 경우 파손의 원인은 기판의 부식이었다.
The morphology and mechanical properties of the PAM(positive active material) after curing and formation were found to affect a great deal on the aging process of the VRLA batteries under deep discharge cycle. Two kinds of the starting materials were used. One is conventional leady oxide commonly used in the battery industry. The other is a chemically synthesized tertabasic lead sulfate(TTB:4PbOㆍPbSO4). The size of the leady oxide was<1㎛. The PbO2 morphology after formation had the form of a blossom consisiting of particles of -0.2㎛ in size. The cohesion force of this type of active material was 0.4kg. The needle-shaped TTB having the size of 30-50㎛ was metasonically transformed to the lead dioxide forma-tion i.e. the shape and size were maintained. The cohesion forces of the PAM containing 50% TTB and 100% TTB were 1.2kg and 1.7kg, respectively. In the case of the VRLA cells made from leady oxide, the cycle life was about 220 cycles at 80% depth of discharge. It was found that the main cause of aging was the development of the coralloid structure resulting from the disintegration and rearrangement of the PAM. Whereas the addition of the TTB greatly retared development of the coralloid structure, thus resulted in a significant improvement in cycle life. The cycle lives of the VRLA batteries with PAM containing 50% and 100% TTB were 80 and 1,000 cycles, respectively. It was found that the failure mode in this case was primarily grid corrosion.
[References]
  1. Simon AC, Caulder SM, Stemmle JT, J. Electrochem. Soc., 122, 461, 1975
  2. Pavlov D, Bashtavelova E, J. Electrochem. Soc., 131, 1468, 1984
  3. Perkins J, Coyle MT, J. Electrochem. Soc., 124, 524, 1977
  4. Simon AC, Caulder SM, Power Sources 5, Academic Press, London, 1975
  5. Caulder SM, Murday JS, Simon AC, J. Electrochem. Soc., 120, 1515, 1973
  6. Caulder SM, Simon AC, J. Electrochem. Soc., 121, 1546, 1974
  7. Feliu S, Otero E, Gonzalez JA, J. Power Sources, 3, 143, 1978
  8. Tudor S, Weisstuch A, Davang SH, Electrochem. Technol., 3, 90, 1965
  9. Perkins J, Mater. Sci. Eng., 28, 167, 1977
  10. Nelson RF, "Power Sources 13," (Keily, T. and Bzxer, B.W., eds.), International Power Sources Symposium Committee, Leatherhead, UK, p. 13, 1991
  11. Nelson RF, Proceedings of the Fourth International ILZRO Lead-Acid Seminar, p. 31, 1990
  12. Rand DAJ, J. Power Sources, 19, 235, 1987
  13. Biagetti RV, Weeks MC, Bell Sys. Tech. J., 49, 1305, 1970
  14. 강홍렬, 김인곤, 황의진, 이종해, 오상협, "이차전지의 가속수명시험 및 성능평가 기술개발," KSRI-90-76-IR, 1990
  15. Mayer GE, Proceedings of Symposium on Advances in Lead-Acid Batteries, Electrochemistry Society, p. 98, 1984
  16. Takahashi K, Tsubota M, Yonezu K, Ando K, J. Electrochem. Soc., 130, 2144, 1983
  17. Pavlov D, Bashtavelova E, J. Electrochem. Soc., 133, 241, 1986
  18. Chang TG, J. Electrochem. Soc., 131, 1755, 1984
  19. Pavlov D, Electrochim. Acta, 13, 2051, 1968
  20. Winsel A, Hullmeine U, Voss E, J. Power Sources, 2, 369, 1977
  21. Burbank J, J. Electrochem. Soc., 113, 10, 1966
  22. Burbank J, Simon AC, Willihnganz E, "Advances in Electrochemistry and Electrochemical Engineering," Vol. 7, pp. 157, Wiley-Interscience, New York, 1971
  23. Burbank J, Ritchie EJ, J. Electrochem. Soc., 116, 125, 1969