Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.30, No.1, 99-105, 1992
셀룰로오스성 물질의 효소적 가수분해에 의한 당생성 메카니즘: 셀룰로오스에 대한 Trichodrma viride 셀룰라아제 Component들의 흡착
Sugar Production Mechanism by the Enzymatic Hydrolysis of Cellulosic Materials: Adsorption of Cellulase Components from Trichoderma viride on Cellulose
Trichoderma viride의 셀룰라아제로부터 CMCase와 Avicelase를 분리하여 이들 효소 component의 흡착특성에 미치는 셀룰로오스의 결정성 및 표면적의 영향에 관하여 연구하였다. CMCase와 Avicelase는 DEAE-Sephadex A 수지에 대한 흡착친화력이 현저하게 다른 성질을 이용, 관크로마토그래피법에 의해 분리되었다. 등온흡착실험에서 여러 가지 셀로로오스성 흡착제에 대한 셀룰라아제 component들의 흡착은 모두 Langmuir 등온흡착 형태이었다. 여기서 CMCase의 최대흡착량(Amax)은 Avicelase 보다 컸으나, 흡착친화력은 Avicelase의 경우 보다 작았다. 한편 셀룰로오스의 표면적은 CMCase의 흡착에, 그의 결정성은 Avicelase의 흡착에 보다 크게 영향을 주었다. 또한 흡착평형상수(K)로부터 흡착에 대한 열역학적 상수를 구하였다. 그 결과, 흡착엔트로피(ΔS)는 CMCase의 흡착에 주요한 역할을 하며, 흡착엔탈피(ΔH) 는 Avicelase의 흡착에 주요한 역할을 한다는 것을 알 수 있었다.
The effects of the crystallinity and the surface area of cellulose on the adsorption behaviiors of CMCase and Avicelase obtained from Trichoderma viride were studied. Two two components, CMCase and Avicelase, were separated by a column chromatographic method which was based on distinctly different affinities on DEAE-Sephadex A resin. From the adsorption experiments, their adsorption of cellulase compo-nents on various cellulosic adsorbents was found to obey the Langmuir isotherm. The maximum adsorption amount(Amax) of CMCase was larger than that of Avicelase, while the adsorption affinity of CMCase was smaller than that of Avicelase. It was also found that the surface area of cellulose was the important factor for the adsorption of CMCase, and the crystallinity for the Avicelase. In addition, thermodynamic parameters were calculated from the adsorption equilibrium constant(K). From this result, it was found that the adsorp-tion entropy(△S) plays the principle role in the adsorption of CMCase and that the adsorption enthalpy(△H) plays the major role in the adsorption of Avicelase.
[References]
  1. Ladisch MR, Lin KW, Voloch M, Tsao GT, Enzyme Microb. Technol., 5(2), 82, 1983
  2. Wood TM, McCrae SI, Adv. Chem. Ser., 181, 181, 1979
  3. Beldman G, Volagen AGJ, Rombouts FM, Pilnik W, Biotechnol. Bioeng., 31, 173, 1988
  4. Wood TM, McCrae SI, Biochem. J., 171, 61, 1978
  5. Ghose TK, Bisaria VS, Biotechnol. Bioeng., 21, 131, 1979
  6. Klyosov AA, Mitkevich OV, Sinitsyn AT, Biochemistry, 25, 540, 1986
  7. Fan LT, Lee YH, Biotechnol. Bioeng., 25, 2707, 1983
  8. Lee SB, Shin HS, Ryu DDY, Mandels M, Biotechnol. Bioeng., 24, 2137, 1982
  9. Ooshima H, Sakata M, Harano Y, Biotechnol. Bioeng., 28, 1727, 1986
  10. Fan LT, Lee YH, Beardmore DH, Biotechnol. Bioeng., 22, 177, 1980
  11. Ooshima H, Sakata M, Harano Y, Biotechnol. Bioeng., 25, 3103, 1983
  12. Tanaka M, Ikesaka M, Matsuno R, Converse AO, Biotechnol. Bioeng., 22, 698, 1988
  13. Kim DW, Yang JH, Jeong YK, Appl. Microbiol. Biotechnol., 28, 148, 1988
  14. Kim DW, Rhee NK, Lee JH, Kim TS, Bull. Natural Sci., 3, 73, 1989
  15. Ryu DDY, Kim C, Mandels M, Biotechnol. Bioeng., 26, 448, 1984
  16. Kyriacou A, Neufeld RJ, Mackenzie CR, Biotechnol. Bioeng., 33, 631, 1989
  17. Beldman G, Voragen AGJ, Rombouts FM, Searle-vanLeeuwen MF, Pilnik W, Biotechnol. Bioeng., 30, 251, 1987
  18. Segal L, Creely JJ, Martin AE, Conrad CM, Text. Res. J., 29, 786, 1959
  19. Lowry OH, Rosebrough NJ, Farr AE, Randall RJ, J. Biol. Chem., 193, 265, 1951
  20. Berghem LER, Pattersson LG, Eur. J. Biochem., 37, 21, 1973
  21. Beldman G, Searle-vanLeeuwen MF, Rombouts FM, Voragen FGJ, Eur. J. Biochem., 146, 301, 1985
  22. Somogyi M, J. Biol. Chem., 195, 19, 1952
  23. Stuart JY, Ristroph DL, Biotechnol. Bioeng., 27, 1056, 1985
  24. Klyosov AA, Biochemistry, 29, 10577, 1990