Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.29, No.6, 693-700, 1991
Poly(Alkyl Methacrylate)와 Tetrabromobisphenol-A(TBBA) Blend의 열분해에 관한 연구
Thermal Degradation of Poly(Alkyl Methacrylate)and Tetrabromobisphenol-A(TBBA) Blend
Poly(alkyl methacrylate)와 난연제인 tetrabromobisphenol-A(TBBA)의 혼합물에 대한 열분해 거동을 50ml/min의 질소기류하에서 가열속도 4-20℃/min으로 변화시키면서 thermogravimetric analysis(TGA), gel per-meation chromatography(GPC), infra-red spectroscopy(IR) 및 gas chromatography(GC)로 추적하였다. 이들 혼합물의 열분해 활성화에너지는 Friedman 법을 사용하여 구하였고, PMMA/TBBA=95/5, PEMA/TBBA=97/3 과 PBMA/TBBA=97/3의 혼합비에서 열적으로 더 안정되었다. 이들 혼합물의 GPC 분석에서는 분해온도증가에 따라 점도평균분자량이 완만히 감소하였고, IR 분석에서 carbonyl index값은 반응온도와 시간의 증가에 따라 느리게 증가하였다. 이들 혼합물의 열분해반응은 주쇄분해반응으로 이루어진다.
The thermal degradation behavior of poly(alkyl methacrylate)and flame-retardant, tetrabormobis-phenol-A(TBBA) mixture was analyzed using the Gel Permeation Chromatography(GPC), Infra-red Spectro-scopy(IR), Gas Chromatography(GC) and Thermogravimetric Analysis(TGA) under nitrogen gas flow of 50ml/min at various heating rates ranging from 4 to 20℃/min. The activation energy of thermal degradation in the mixture was determined using the Friedman method. The optimum thermal stabilization was obtained in PMMA/TBBA=95/5, PeMA/TBBA=97/3 and PBMA/TBBA=97/3 blend. At GPC analyses, the viscosity average molecular weight in the mixture was decreased slwoly with decomposition temperature. At IR analy-ses, the value of carbonyl index in the mixture was increased slowly with reaction time and temperature. The thermal degradation mechanism of poly(alkyl methacrylate) and TBBA mixture was observed to be main chain scission under nitrogen environment.
[References]
  1. Kelen T, Polymer Degradation, van Nostrand Reinhold, New York, 1983
  2. Hawkins WL, Polymer Stabilization, John Wiley and Sons, New York, 1972
  3. Schnabel W, Polymer Degradation, Hanser, New York, 1981
  4. Grassie N, Scott G, Polymer Degradation and Stabilization, Cambridge, London, 1985
  5. Stevens MP, Characterization and Analysis of Polymer by Gas Chromatography, Marcel Dekker, New York, 1966
  6. Slade PE, Jenkins LT, Thermal Characterization Techniques, Marcel Dekker, New York, 1966
  7. Gupta MC, Nambiar J, J. Colloid Interface Sci., 259, 1081, 1981
  8. Clark JE, Jellinek HHG, J. Polym. Sci. A: Polym. Chem., 3, 1171, 1965
  9. Day M, Wiles DM, Thermal Analysis, John Wiley and Sons, New York, 1342, 1984
  10. Flynn JH, Florin RE, Pyrolysis and GC in Polymer Analysis (Liebman, S.A. and Levy, E.T., ed.), Marcel Dekker, New York, Chap. 4, 1985
  11. Garcia D, J. Polym. Sci., 22, 1773, 1984
  12. Rafalko JJ, J. Polym. Sci., 22, 1211, 1984
  13. Cooney JD, Wiles DM, J. Appl. Polym. Sci., 28, 2887, 1983
  14. Kissinger HE, Anal. Chem., 21, 1702, 1957
  15. Freeman ES, Carroll B, J. Polym. Sci., 62, 394, 1950
  16. Chatterjee PK, Conrad CM, J. Polym. Sci. A: Polym. Chem., 6, 3217, 1968
  17. Friedman HL, J. Polym. Sci. C: Polym. Lett., 6, 183, 1963
  18. Anderson DA, Metzger G, Anal. Chem., 54, 253, 1961
  19. Fuoss RM, Salyer I, Wilson HS, J. Polym. Sci., 2, 3147, 1964
  20. Horowitz HH, Metzger G, Anal. Chem., 35, 1465, 1963
  21. Coats AW, Redfern JP, Nature, 68, 201, 1964
  22. Reich L, Levi DW, Makromol. Chem., 66, 102, 1963
  23. Doyle CD, J. Appl. Polym. Sci., 5, 285, 1961
  24. Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881, 1965
  25. Seul SD, Kim DK, Park SW, HWAHAK KONGHAK, 25(3), 237, 1987
  26. Calahorra E, Cortazar H, Guzuman EM, J. Polym. Sci., 23, 257, 1985
  27. Wiesner E, Chem. Vlakna, 26(3-4), 146, 1976
  28. Hirata T, Kashiwagi T, Brown JE, Macromolecules, 18, 1410, 1985
  29. Redfern JP, Lukaszewski GM, Lab. Prot., 10, 469, 1961