Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.29, No.5, 596-605, 1991
LaCoO3 Perovskite 촉매상에서의 NO 환원반응
NO Reduction on LaCoO3 Perovskite Catalyst
LaCoO3 페롭스카이트형 산화물 촉매에서의 NO 분해 및 환원반응에 미치는 CO의 영향을 초고진공하에서 열탈착 실험을 통하여 조사하였다. 흡착되는 NO중 약 70%는 LaCoO3 표면의 Co3+에 분자상태로 흡착하였으며, 나머지는 산소결함에 분해흡착하여 표면 complex를 형성하였다. Co3+에 분자상태로 흡착한 NO는 그 일부가 450K에서 최대 탈착속도를 보였으며, 나머지는 분해되어 N2 및 N2O를 생성하였다. 선흡착된 CO가 후흡착되는 NO의 분해 및 환원에 큰 영향을 미치지 못한 반면, 후흡착된 α-CO2로 탈착함으로써 NO의 분해를 촉진하였고, NO의 dimer나 chelate형 흡착물의 산소를 이용하여 후흡착된 β-CO는 β-CO2를 생성하여 탈착함으로써 N2의 생성을 촉진하였다.
NO decomposition and NO reduction by CO on LaCoO3 perovskite catalyst have been studied using the technique of thermal desorption spectrometry(TDS)under ultrahigh vacuum(UHV) condition at the adsorption temperature of 300K. About 70% of NO adsorbed molecularly on Co3+ ion, and the others adsorbed dissociatively on oxygen vacancy and formed various surface complexes. A part of NO adsorbed on Co3+ showed maximum desorption rate at 450K, and the others decomposed to form N2 or N2O. Pre-adsorbed CO gave little effect on NO dissociation, but in the case of pre-adsorption of NO, the post-dosed CO promoted both the dissociation of NO and the formation of N2. The post-dosed α-CO reacted with NO adsorbed on Co3+ and desorbed as α-CO2 resulting in the enhancement of NO dissociation. And the post-dosed β-CO, which adsorbed on the oxygen of the complex, also promoted the formation of N2 by desorbing as β-CO2.
[References]
  1. Dwyer FG, Catal. Rev.-Sci. Eng., 6, 261, 1972
  2. Shelef M, Catal. Rev.-Sci. Eng., 11, 1, 1975
  3. Kummer JT, Prog. Energy Combust. Sci., 6, 177, 1980
  4. Hegedus LL, Summers JC, Schlatter JC, Baron K, J. Catal., 56, 321, 1979
  5. Libby WF, Science, 171, 499, 1971
  6. Voorhoeve RJH, Remeika JP, Trimble LE, "The Catalytic Chemistry of Nitrogen Oxides," Plenum, pp. 215-233, New York, N.Y., 1975
  7. Voorhoeve RJH, "Advanced Materials in Catalysis," Burton, J.J. and Garten, R.L., (eds.), Academic Press, Chap. 5, New York, N.Y., 1977
  8. Kim JB, Lee WY, Rhee HK, Lee HI, HWAHAK KONGHAK, 26(5), 535, 1988
  9. Tak YS, Lee GD, Lee WY, Lee HI, HWAHAK KONGHAK, 26(6), 641, 1988
  10. 김영호, 이호인, 촉매, 6, 20, 1990
  11. Park YS, Lee WY, Rhee HK, Sung BP, Lee HI, Korean J. Chem. Eng., 3(2), 165, 1986
  12. 이충균, 공학석사학위논문, 서울대학교, 1985
  13. Park YS, Lee HI, HWAHAK KONGHAK, 23(2), 79, 1985
  14. Voorhoeve RJH, Johnson DW, Remeika JP, Gallagher PK, Science, 195, 827, 1977
  15. Shelef M, Kummer JT, Chem. Eng. Prog., 67, 74, 1971
  16. Kugler EL, Kadet AB, Gryder JW, J. Catal., 41, 72, 1976
  17. Yao HC, Shelef M, J. Catal., 31, 377, 1973
  18. Redhead PA, Vacuum, 12, 203, 1962
  19. Hendershot RE, Hansen RS, J. Catal., 98, 150, 1986
  20. Voorhoeve RJH, Remeika JP, Trimble LE, Ann. N.Y. Acad. Sci., 272, 3, 1976
  21. Sorenson SC, Wronkiewicz JA, Sis LB, Wirtz GP, Ceram. Bull., 53, 446, 1974
  22. DeLouise LA, Winograd N, Surf. Sci., 159, 199, 1985