Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.29, No.5, 557-565, 1991
졸-겔법으로 제조한 알루미나막의 기체 투과 및 분리 특성
Gas Permeation and Separation Characteristics of Alumina Membranes Prepared by Sol-Gel Method
알루미늄 이소 프로폴사이드로부터 산성 조건에서 졸-겔법에 의하여 보헤마이트 졸을 만들어 알루미나 지지체 위에 코팅하였다. 이것을 상온에서 이틀간 건조후 500℃에서 한 시간동안 열처리하였다. 이 막은 약 3nm의 매우 작고 균일한 기공을 가지며, 코팅의 횟수에 따라 0.5-8.2㎛의 두께를 가졌다. 7.5㎛의 두께를 가진 막의 기체 투과 특성을 헬륨, 질소, 수소 그리고 이산화탄소에 대하여 조사하였다. 이들 기체에 대해 Knudsen 확산에 의한 투과가 지배적이었다. 그러나 이산화탄소와 질소의 경우 표면 확산에 의한 영향으로 Knudsen확산에 의하여 예측되는 값보다 상당히 높은 투과도를 나타냈다. 흡착 등온선으로부터 얻어진 이산화탄소의 흡착 에너지는 22.40kJ/mol이었으며, 290K에서 계산된 이산화탄소와 질소의 표면 확산계수는 각각 10.66×10-9m2/sec와 10.84×10-9m2/sec였다. 표면 확산에 의한 추가적인 흐름량은 이산화탄소와 질소에 대하여 각각 43%와 22%였다. 이산화탄소-수소, 이산화탄소-질소 혼합물의 분리인자는 온도 증가에 따라 Knudsen확산에 의한 이론비에 접근하였다.
Boehmite AlO(OH) sol was prepared by sol-gel method from aluminum iso-propoxide under an acidic condition and this sol was coated on an alumina support. After it was dried for 2 days at room temperature and calcined at 500℃ for one hour. The membrane had homogeneous ultra fine pores, about 3.0nm, with a narrow pore size distribution and the thickness was in the range of 0.5-8.2㎛, depending upon the number of coatings. Gas permeation characteristics of the membrane with 7.5㎛ thickness were investigated for four gases He, N2, H2 and CO2. Knudsen diffusion was the dominant transport mechanism for these gases. But CO2 and N2 showed much higher permeabilities than the values predicted by Knudsen diffusion due to the effect of surface diffusion. The adsorption energy of CO2 obtained from adsorption iso-therms was 22.40kJ/mol and the calculated surface diffusion coefficients of CO2 and N2 turned out to be 10.66×10-9m2/sec and 10.84×10-9m2/sec at 290K, respectively. The additional flows by surface diffusion of CO2 and N2 was about 43% and 22% of the total flows, respectively. The separation factors of CO2-H2 and CO2-N2 mixtures approached the theoretical values predicted by Knudsen diffusion with increasing temperature.
[References]
  1. Brinker CJ, Scherer GW, "Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing," Ch. 1, 3rd ed., Academic Press, New York, 1990
  2. Pierson HO, "World-wide Applications and Market Overview of Sol-Gel," Presented at Assessing and Quantifying the Market Impact Sol-gel Production of High Performance Ceramics and Glasses, December 10-12, Marco Island, Florida, 1989
  3. Hsieh HP, AIChE Symp. Ser., 85(268), 53, 1989
  4. Uhlhorn RJR, HuisIn'tVeld MHBJ, Keizer K, Burggraaf AJ, J. Mater. Sci. Lett., 8, 1135, 1989
  5. Leenaars AFM, Keizer K, Burggraaf AJ, J. Mater. Sci., 19, 1077, 1984
  6. Hsieh HP, Bhave RR, Fleming HL, J. Membr. Sci., 39, 221, 1988
  7. Tock RW, Kammermeyer K, AIChE J., 15(5), 715, 1969
  8. Uhlhorn RJR, Keizer K, Burggraaf AJ, J. Membr. Sci., 48, 225, 1989
  9. Keizer K, Uhlhorn RJR, VanVuren RJ, Burggraaf AJ, J. Membr. Sci., 39, 285, 1988
  10. Scherer GW, J. Non-Cryst. Solids, 100, 77, 1988
  11. Scherer GW, J. Non-Cryst. Solids, 121, 104, 1990
  12. Wang KH, M.S. Thesis, KAIST, Seoul, Korea, 1989
  13. DeBoer JH, "The Structure and Properties of Porous Materials," p. 68, Butterworth, London, 1958
  14. Freilich D, Tanny GB, J. Colloid Interface Sci., 64(2), 362, 1978
  15. Leenaars AFM, Burggraaf AJ, J. Colloid Interface Sci., 105(1), 27, 1985
  16. Anderson MA, Gieselmann MJ, Xu Q, J. Membr. Sci., 39, 243, 1988
  17. Mah SK, M.S. Thesis, KAIST, Seoul, Korea, 1990
  18. Asaeda M, Du LD, Ikeda K, J. Chem. Eng. Jpn., 19(3), 238, 1986
  19. Leenaars AFM, Burggraaf AJ, J. Membr. Sci., 24, 245, 1985
  20. Lee KH, Hwang ST, J. Colloid Interface Sci., 110(2), 544, 1986
  21. Haraya K, Shindo Y, Hakuta T, Yoshitome H, J. Chem. Eng. Jpn., 19(3), 186, 1986
  22. Sun YM, Khang SJ, Ind. Eng. Chem. Res., 27, 1136, 1988
  23. Sladek KJ, Gilliland ER, Baddour RF, Ind. Eng. Chem. Fundam., 13, 100, 1974