Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.39, No.6, 727-733, 2001
TEOS/VTES 혼성 코팅 용액의 젤화 거동과 젤 구조
Gelation Behavior and Gel Structure of Tetraethyl Orthosilicate/Vinyltriethoxysilane Hybrid Coating Solution
본 연구에서는 tetraethyl orthosilicate(TEOS)/vinyltriethoxysilane(VTES) 혼성 코팅 용액에서의 젤화 거동과 젤 구조를 농도비와 온도를 변화하며 관찰하였다. 젤화는 산성용액에서 수행되었으며 SEM, UV, NMR, 점도측정, 시각적 관찰에 의해서 젤의 구조와 젤화 시간을 측정하였다. 실란커플링제인 VTES 함량이 많아질수록 젤화시간은 증가하는 경향을 보이나 선형적으로 비례하지는 않으며, 반응온도가 증가함에 따라 젤화 시간은 급격히 감소하였다. 한편, VTES 함량이 증가할수록 다공성이 큰 젤이 형성됨을 규명하였다. 예를들면, VTES의 농도가 TEOS의 9배에 이르게 되면 큰 기공들을 포함하는 저밀도 젤이 형성되며, 오랜 시간 숙성 후 xerogel 상태에서도 부피수축이 거의 없었다. 다른 조성비를 갖는 경우에는 큰 부피수축을 보이며 이로부터 솔-젤 공정에서 후처리 과정의 중요성을 확인하였다.
In this article, the gelation behavior and gel structure were analyzed for the coating solutions of TEOS(tetraethyl orthosilicate)/VTES(vinyltriethoxysilane) with various molar ratios at different temperatures. Gelation was accomplished through the sol-gel method in aqueous solution. The gelation time and gel structure proceeded by the SEM, UV, NMR, rheometry, and visual observation. The gelation time was increased, but not linearly, with the content of the silane coupling agent VTES. Meanwhile, the gelation time was reduced with temperature. As the content of VTES was increased, the pore size of the prepared gel was increased. For example, when the VTES content was nine times as high as the TEOS content, the gel possessed large pores with low density structure. Moreover, in the latter case, the volume contraction was negligible with a considerably long aging time, which was different from the cases for other molar ratios. The present results showed that the post-treatment conditions in the sol-gel process affected the gel structure significantly.
[References]
  1. Park DG, Polym. Sci. Technol., 8(3), 248, 1997
  2. Park JO, Polym. Sci. Technol., 8(3), 261, 1997
  3. Brinker CJ, Scherer GW, "Sol-Gel Science," Academic Press, 1992
  4. Hench LL, West JK, Chem. Rev., 90, 33, 1990
  5. Lee SY, Lee JD, Yang SM, J. Mater. Sci., 34(6), 1233, 1999
  6. Kim KS, Kim WS, HWAHAK KONGHAK, 37(1), 56, 1999
  7. Iwamoto T, Mackenzie JD, J. Mater. Sci., 30(10), 2566, 1995
  8. Marsmann H, "NMR-17, Oxygen-17 and Silicon-29," Springer, Berlin, 1981
  9. Agren P, Rosenholm JB, J. Colloid Interface Sci., 204(1), 45, 1998
  10. Khan SA, Prud'Homme RK, Rabinovich EM, Sammon MJ, J. Non-Cryst. Solids, 110, 153, 1989
  11. Winter HH, Polym. Eng. Sci., 27(22), 1698, 1987
  12. Tung CYM, Dynes PJ, J. Appl. Polym. Sci., 27, 569, 1982
  13. Iler RK, "The Chemistry of Silica," Wiley & Sons, Inc., 292, 1979
  14. Eu YJ, Kim DJ, Bae BS, J. Sol-Gel Sci. Tech., 13, 409, 1998