Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.29, No.4, 417-424, 1991
수치 해법에 의한 분무 열분해 반응기의 모사(I)-반응기내 에어로졸의 거동 연구
Simulation of Spray Pyrolysis Reactor by Numerical Methods(I)-On the Behavior of Aerosols inside the Reactor-
분무열분해 반응기에서 연속식, 모멘텀, 에너지, 물질 수지식을 고려하여 모델식을 세웠다. 모델식의 수치 적분에 의해 열분해 반응기내의 온도 분포, 기체 유속 분포, 에어로졸 농도 분포를 계산하였으며 에어로졸의 반응기내 궤적과 온도 경로를 나타냈다. 열분해 반응기에서 에어로졸은 thermophoresis에 의해 r방향을 따라서 반응기 중심쪽으로 이동하고 있으며 반으기 벽 근처에는 에어로졸이 존재하지 않고 있다. 기체의 r방향 유속은 기체가 급히 가열될 때 r/R=0.5 근처에서 빠르게 반응기 안쪽으로 흐르고 있다. 기체 유량이 증가함에 따라 에어로졸이 열분해 온도에 도달해 있는 시간이 감소하며 반응기내 초기 에어로졸 위치에 따른 온도 경로의 차이가 크게 나타나고 있다.
A model has been developed for spray pyrolysis reactor, considering continuity, momentum, energy and mass balances in the reactor. By numerical integration of model equations, the profiles of gas temperature, gas stream velocity and aerosol concentration are shown inside the reactor and the paths and temperature histories of aerosols are described along the reactor. Aerosols are moving toward the center of spary pyrolysis reactor in thr radial direction by thermophoresis and aerosols are not found in the region near the reactor wall. The radial gas stream velocity is significant around r/R=0.5 and is in the direction toward the center of reactor when the gas flow is heated rapidly. As the gas flow rate increases, aerosols begin to have less residence time under pyrolysis temperature iinside the reactor and the diference of tem-perature histories of aerosols increases depending on the initial locations of aerosols at the reactor inlet.
[References]
  1. Bowen HK, Mater. Sci. Eng., 44, 1, 1980
  2. Pratsinis SE, Mastrangelo SVR, Chem. Eng. Process., 62, 1989
  3. Ellis SK, McNamara EP, Ceram. Bull., 68, 998, 1989
  4. Kim KS, Proc. 2nd SICHEM Symp., Powder Technology, 229, 1990
  5. Gardner TJ, Messing GL, Am. Ceram. Soc. Bull., 63, 1498, 1984
  6. Ono T, Kagawa M, Syono Y, J. Mater. Sci., 20, 2483, 1985
  7. Inshizawa H, Sakurai O, Mizutani N, Kato M, Am. Ceram. Soc. Bull., 65, 1399, 1986
  8. Liu TQ, Sakurai O, Mizutani N, Kato M, J. Mater. Sci., 21, 3698, 1986
  9. Kanno Y, Suzuki T, J. Mater. Sci. Lett., 7, 386, 1987
  10. Tohge N, Tatsumisago M, Minami T, Okuyama K, Adachi M, Kousaka Y, Jpn. J. Appl. Phys., 27, L1086, 1988
  11. Kodas T, Datye A, Lee V, Engler E, J. Appl. Phys., 65, 2149, 1989
  12. Park IS, M.S. Dissertation, Kangweon National Univ., Chuncheon, Korea, 1990
  13. Kays WM, Perkins HC, "Handbook of Heat Transfer," (edited by Rohsenow, W.M., Hartnett, J.P. and Ganic, E.N.), 2nd ed., McGraw-Hill, New York, Ch. 7, 1985
  14. Slattery JC, "Momentum, Energy, and Mass Transfer in Continua," 2nd ed., McGraw-Hill, New York, 1981
  15. Kim KS, Pratsinis SE, AIChE J., 34, 912, 1988
  16. Kim KS, Pratsinis SE, Chem. Eng. Sci., 44, 2475, 1989
  17. Walker KL, Geyling FT, Nagel SR, J. Am. Ceram. Soc., 63, 522, 1980
  18. Anderson DA, Tannerhill JC, Pletcher RH, "Computational Fluid Mechanics and Heat Transfer," McGraw-Hill, New York, 1984
  19. Gerald CF, Wheatley PO, "Applied Numerical Analysis," 3rd edn., Addison-Wesley, Reading, Massachusetts, 1984