Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.29, No.4, 396-406, 1991
메탄 수증기 개질반응의 속도론적 연구
Kinetics of Metane Steam Reforming
공업용 촉매(ICI57-4M)의 CH4 수증기 개질반응속도를 550-650℃, 전압 1-5atm의 조건에서 흐름 반응기를 사용하여 조사하였다. 반응속도식을 얻기 위한 실험은 반응기 입구의 CH4, H2 및 H2O의 분합을 조정하여 행하였다. 수소분압과 반응온도에 따라 수소의 저해효과가 있는 반응속도식과 그 효과가 없는 다음의 두 가지 반응속도식이 주어졌다. -r=2.4×1011exp(-45300/RT) [P5-(P3+P4)(1-Xe)/Xe]/P1 -r=2.3×108exp(-32000/RT) [P5-(P3+P4)(1-Xe)/Xe] 수소 재해효과는 수소분압이 클 때 관찰되었으며 반응온도가 증가함에 따라 수소 저해효과가 시작되는 수소분압이 증가하였다. 또한 실험결과의 분석에 적용되는 반응속도식에 따라 계산된 활성화에너지와 반응속도에 미치는 반응물들의 영향에 대한 해석이 많이 달라질 수 있음을 보였다.
The kinetics of the methane steam reforming reaction over an industrial catalyst(ICI 57-4M) was investigated at emperatures 550-650℃ and at total pressures 1-5atm in a flow reactor. The experiments were performed by varying the inlet partial pressure of methane, hydrogen, and water. Depending on hydro-gen partial pressures and reaction temperatures, the following two rate equations, one with the hydrogen inhibition effects and the othe without the effects, were given: -r=2.4×1011 exp(-45300/RT) [P5-(P3+P4)(1-Xe)/Xe]/P1 -r=2.3×108 exp(-32000/RT) [P5-(P3+P4)(1-Xe)/Xe] The hydrogen inhibition effect was observed at high hydrogen partial pressures, and with increasing reaction temperature, the hydrogen partial pressure above which the inhibition effect became significant has increased. Depending on the rate expressions chosen for the analysis of the data, it was also shown that the activation energies and the interpretation on the role of the reactant species involved could be widely different.
[References]
  1. Rostrup-Nielsen JR, Catal. Sci. Technol., 5, 1, 1984
  2. Twigg MV, "Catalyst Handbook," Wolfe Publishing Ltd., England, 1989
  3. VanHook JP, Catal. Rev.-Sci. Eng., 21, 1, 1980
  4. 이태진, 촉매, 한국화학공학회, 3(2), 22, 1987
  5. 김동현, "연료개질기 개선연구," 동력자원부 (1989), 1990
  6. 이주성, "연료전지에 관한 연구," 한국과학재단, 1989
  7. Xu J, Froment GF, AIChE J., 35, 88, 1989
  8. Atroshchenko VL, Raman K, Zvyagintsev GL, J. Appl. Chem. USSR, 42, 1414, 1969
  9. Grover SS, Hydrocarb. Process., 49, 109, 1970
  10. Hyman MH, Hydrocarb. Process., 47, 131, 1968
  11. Khomenko AA, Apel'baum LO, Shub FS, Temkin MI, Kinet. Katal., 11, 1233, 1970
  12. Khomenko AA, Apel'baum LO, Shub FS, Temkin MI, Kinet. Katal., 12, 367, 1971
  13. Rostrup-Nielsen JR, "Steam Reforming Catalysts," Danish Technical, Copenhagen, 1975
  14. Murray AP, Snyder TS, Ind. Eng. Chem. Process Des. Dev., 24, 286, 1985
  15. Numaguchi T, Kikuchi K, Chem. Eng. Sci., 43, 2295, 1988
  16. Agnelli ME, Demicheli MC, Ponzi EN, Ind. Eng. Chem. Res., 26, 1704, 1987
  17. Mears DE, J. Catal., 20, 127, 1971
  18. Mears DE, Ind. Eng. Chem. Process Des. Dev., 10, 541, 1971
  19. Weisz PB, Prater CD, Adv. Catal., 6, 143, 1954
  20. Bodorov IM, Apel'baum LO, Temkin MI, Kinet. Katal., 5, 696, 1964
  21. Bodorov IM, Apel'baum LO, Temkin MI, Kinet. Katal., 8, 821, 1967
  22. Bodorov IM, Apel'baum LO, Temkin MI, Kinet. Katal., 9, 1065, 1968
  23. Bodorov IM, Apel'baum LO, Kinet. Katal., 8, 379, 1967
  24. Lewis WK, Gilliland ER, Reed WA, Ind. Eng. Chem., 41, 1227, 1949
  25. Munster P, Grabke HJ, J. Catal., 72, 279, 1981
  26. Ross JRH, Steel MCF, J. Chem. Soc.-Faraday Trans., 1, 10, 1970
  27. Akers WW, Camp DP, AIChE J., 1, 471, 1955
  28. Allen DW, Gerhard ER, Likens MR, Ind. Eng. Chem. Process Des. Dev., 14, 256, 1975
  29. Arnold MR, Atwood K, Baugh HM, Smyser HD, Ind. Eng. Chem., 44, 999, 1952
  30. Fujimoto H, J. Soc. Chem. Ind. Jpn. Suppl., 36, 147, 1933
  31. Katsobashvili YR, Brun-Tsekhovoi AR, Shchekin VV, Sladkovskaya II, Kinet. Katal., 2, 513, 1961