Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.29, No.3, 323-335, 1991
등온법에 의한 석탄 촤 연소반응 및 촤-수증기 가스화반응특성
Isothermal Coal Char Combustion and Char-Steam Gasification Reactivity
동원 무연탄, 호주 Coalex(HD) 역청탄, 호주 Victoria 준역청탄 및 파키스탄 Lakla 갈탄을 열분해하여 얻은 촤의 연소반응 및 수증기 가스화반응속도론적 특성 실험을 등온 방식에 의하여 수행하였다. 기체 확산 영향이 제거된 입자 크기에서 촤-연소반응은 560-680℃의 동은 조건, 5-20% 사이의 산소 농도 변화 조건 및 열분해 조건 변화에 대하여 실험하였고, 촤-수증기 반응은 750-950℃의 등온 조건에서 반응속도가 구하여졌다. 촤-연소반응에너지는 113-165kJ/g-mol의 값을 나타내었다. 전체적인 반응상수를 고려한 촤 연소 및 촤 수증기 반응속도 상관관계식을 제시하였다.
Thermal analyses were conducted by isothermal technique in order to characterize the combus-tion and steam gasification reaction of coal chars that were carbonized from Dong-won anthracite, Australian Coalex(HD) bituminous coal, Australian Victoria subbituminous coal, and Pakistian Lakla lignite. Char combus-tion reactions were carried out with respect to various factors : char particle size(0.08-0.5mm), isothermal reaction temperature(560-680℃), oxygen concentration(5%-20%), and pyrolysis conditions. Char-steam gasifi-cation reactions were carried out at isothermal temperatures of 750-950℃. In combustion reaction, measured reaction orders of oxygen concentration and activation energy were 0.56-0.98 and 53-123kJ/g-mol, respectively. In char-steam gasification reaction, measured activation energy were in the range between 113kJ/g-mol and 165kJ/g-mol. The kinetic equation of char combustion and char-steam reaction was correlated with various factor.
[References]
  1. Bak YC, Son JE, HWAHAK KONGHAK, 25(6), 546, 1987
  2. Yagi S, Kunii D, 5th Symposium on Combustion, Reinhold, N.Y., 231, 1955
  3. Levenspiel O, "Chemical Reaction Engineering," John Wiley & Sons, p. 257-378, 1972
  4. Ishida M, Wen CY, AIChE J., 14, 311, 1968
  5. Wen CY, Ind. Eng. Chem., 60, 34, 1968
  6. Petersen EE, AIChE J., 3, 443, 1957
  7. Szekely J, Evans JW, Sohn HY, "Gas-Solid Reactions," Academic Press, 1976
  8. Ishida M, Wen CY, Chem. Eng. Sci., 26, 1031, 1971
  9. Sohn HY, Szekely J, Chem. Eng. Sci., 27, 763, 1972
  10. Dutta S, Wen CY, Belt RJ, Ind. Eng. Chem. Process Des. Dev., 16, 20, 1977
  11. Simons GA, Finson ML, Combust. Sci. Technol., 19, 217, 1979
  12. Bhatia SK, Perlmutter DD, AIChE J., 26, 379, 1980
  13. Gavalas GR, AIChE J., 26, 577, 1980
  14. Adschiri T, Kojima T, Furusawa T, Chem. Eng. Sci., 42, 1319, 1987
  15. Tseng HP, Edgar TF, Fuel, 68, 114, 1989
  16. Park KY, Bak YC, Son JE, Park WH, HWAHAK KONGHAK, 25(4), 345, 1987
  17. 박영철, 양현수, 손재익, 에너지 R&D, 10, 36, 1988
  18. Bak YC, Yang HS, Son JE, HWAHAK KONGHAK, 28(6), 691, 1990
  19. Lewis JB, Connor P, Murodch R, Carbon, 2, 311, 1964
  20. Armiglio H, Duval X, J. Chem. Phys., 64, 916, 1967
  21. Magne P, Duval X, Bull. Soc. Chim., 5, 1585, 1971
  22. Smith IW, Tyler RJ, Combust. Sci. Technol., 9, 87, 1974
  23. Tyler RJ, Wouterlood HJ, Mulcahy MFR, Carbon, 14, 271, 1976
  24. Smith IW, Fuel, 57, 40, 1978