Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.29, No.2, 190-198, 1991
Silica Gel을 담체로한 효소의 고정화 및 충전층 반응기에서의 반응속도론적 해석
Hydrolytic Enzyme Immobilization by Cross-linked Silica Gel and Their Kinetic Behaviors in Packed Bed Reactor
본 연구에서는 가수분해효소인 trypsin을 가교결합 고분자인 실리카 겔을 담체로 하여 포괄법으로 고정시키고 고정화된 담체를 일정한 크기로 만든 후 충전층반응기에 넣어 DL-BAPNA 기질을 사용해 trypsin에 대한 반응성을 평가하였다. 25-200cm/hr의 유속범위에서 Michaelis 상수와 최대반응속도 Vm’은 고정화시키지 않았을 경우에 비해 Michaelis 상수는 작게 그리고 최대반응속도는 더 크게 나타났으며 Michaelis 상수는 유속에 따라 감소한 반면 최대반응속도는 증가하였다. 실리카 겔의 담체직경이 0.6mm인 고정화효소에 대한 효율인자는 0.9-1로서 내부저항을 무시할 수 있었으며 외부물질전달계수 KS는 8.82×10-4∼1.75×10-3cm/hr이었다. 또한, Michaelis 상수는 trypsin의 고정화밀도에 의해 영향을 받았으며 고정화된 효소의 양이 10mg trypsin/g silica gel일 때 최적전화율을 나타내었다.
This study is for the immobilization of a hydrolytic enzyme, trypsin, within cross-linked silica gels and their kinetic behaviors in a packed bed reactor using a sensible amide substrate, DL-BAPNA. In the range of linear velocity of 25 to 200cm/hr, Michaelis constants(Km’) and maximum reaction rates(Vm’) for immobilized trypsin were less and greater than those for a soluble trypsin, respectively. In comparison with free enzyme, Michaelis constants decreased but maximum reaction rates increased as linear velocity increased. In the case of supported silica-gel with the spherical diameter of 0.6mm, the internal diffusion resistance was negligible because the effectiveness factor was found to be in the range of 0.9-1 and the mass transfer coefficient(Ks) was in the range of 8.82×10-4 to 1.75×10-3cm/sec. In addition, Michaelis con-stant was the function of the amount of immobilized trypsin(immobilization density) and the conversion was found to be maximized at the immobilization density of 10mg trypsin/g silica gel.
[References]
  1. Chibata I, "Immobilized Enzymes," Halsted Press, John Wiley, New York, London, 1978
  2. Erlanger B, Kokowsky N, Cohen W, Arch. Biochem. Biophys., 95, 271, 1961
  3. Geankoplis J, "Mass Transfer Phenomena," Holt Reinhart Winston, 1974
  4. Gillf G, Thomas D, Broun G, Biotechnol. Bioeng., 16, 315, 1974
  5. Gondo S, Isayama S, Kusunoki K, Biotechnol. Bioeng., 37, 423, 1975
  6. Hirano K, Karube I, Matsunaga T, Suzuki S, J. Ferment. Technol., 55, 401, 1977
  7. Hornby WE, Lilly MD, Crook EM, Biochem. J., 107, 669, 1968
  8. Iler RK, "The Colloid Chemistry of Silica and Silicates," Cornell University, New York, 1955
  9. Kobayashi T, Mooyoung M, Biotechnol. Bioeng., 125, 47, 1973
  10. Lee SB, Kim SB, Ryu DDY, Biotechnol. Bioeng., 21, 2023, 1979
  11. Lee SB, Ryu DDY, Biotechnol. Bioeng., 21, 1499, 1979
  12. Lee YY, Tsao TG, J. Food Sci., 39, 667, 1974
  13. Lilly MD, Hornby WE, Crook EH, Biochem. J., 100, 718, 1966
  14. Marrazzo WN, Merson RL, Biotechnol. Bioeng., 17, 1515, 1975
  15. Ollis DF, Biotechnol. Bioeng., 14, 871, 1972
  16. O'Neil SP, Biotechnol. Bioeng., 14, 201, 1972
  17. Preiser H, Schmitz J, Maestracci D, Crane RK, Clin. Chim. Acta, 59, 105, 1975
  18. Rovito BJ, Kittrell JR, Biotechnol. Bioeng., 15, 143, 1973
  19. Ryu DDY, Chung SH, Katoh K, Biotechnol. Bioeng., 19, 159, 1977
  20. Schneider P, Smith JM, AIChE J., 14, 886, 1968
  21. Smith JM, "The Chemical Engineering Kinetics," 2nd ed., McGraw-Hill, New York, 1970
  22. Toda K, Biotechnol. Bioeng., 17, 1729, 1975
  23. Zaborsky: "Immobilized Enzymes," CRC Press, 1974