Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.29, No.2, 183-189, 1991
연료전지의 Pt/C 전극 제조 조건이 전극 성능에 미치는 영향
Effects of Preparation Conditions of Pt/C Electrode on the Cathode Performance in a Fuel Cell
연료전지의 전극제조에 있어서 소성 분위기, 백금 입자크기, 백금 함침량 및 함침 방법 등의 변수가 다공성 탄소전극의 성능에 미치는 영향을 20wt% 황상전해질을 사용한 반쪽전지 실험을 통하여 연구하였다. 실험결과 콜로이드법으로 백금의 평균입자크기를 30Å이하로 제조할 수 있음을 XRD분석을 통하여 확인하였고, 전극의 소성을 수소 및 질소 분위기에서 행하는 경우 백금의 평균입자크기를 각각 30Å 및 40Å으로 유지되지만 산소분위기에서 소성을 행하는 경우 120Å으로 증가되는 것을 TEM으로 확인하였다. 백금의 평균입자크기 30Å, 40Å 및 120Å에 대하여 전극의 성능은 700mV 에서 각각 260, 230 및 110mA/cm2을 나타내었다. 또 백금의 함침량을 5, 10, 20wt%로 증가시킴에 따라 전극의 성능은 700mV에서 150, 230, 270mA/cm2로 향상되었다.
Effects of sintering atmosphere, average particle size and loading density of Pt and preparation method of Pt/C catalyst on the performance of porous carbon electrode were examined in a half cell of 20wt% sulfuric acid electrolyte. From the XRD data, the average Pt Particle size prepared by the colloidal method was confirmed to be less than 30Å. From the TEM data, it was confirmed that the average Pt particle sizes sintered under H2 and N2 atmosphere were maintained at 30Å and 40Å respectively but it grew to 120Å under O2 atmosphere sintering. For the average Pt particle size of 30Å, 40Å and 120Å, the corresponding performance of the electrode was shown to be 260, 230 and 110mA/cm2 respectively at 700mV. As the Pt loading was increased to 5, 10 and 20wt%, the corresponding performance of the electrode was improved to 150, 230 and 270mA/cm2 at 700mV.
[References]
  1. Madougall A, "Fuel Cells," John Wiley & Sons, N.Y., 1976
  2. Summary Proceedings of a Workshop by UNESCO: "Fuel Cell Trends in Research and Applications," Paris, 1985
  3. Appleby AJ, Foulkes FR, "Feul Cell Handbook," Van Nostrand Reinhold, N.Y., 1989
  4. Kunz HR, Gruver GA, J. Electrochem. Soc., 122, 1279, 1975
  5. Bregoli LG, Electrochim. Acta, 23, 489, 1978
  6. Watanabe M, Tomikawa M, Motoo S, J. Electroanal. Chem., 195, 81, 1985
  7. Cameron DS, J. Mol. Catal., 38, 27, 1986
  8. Watanabe M, Sei M, Stonehart P, J. Electroanal. Chem., 261, 375, 1989
  9. Honji A, Mori T, Tamura K, Hishinuma Y, J. Electrochem. Soc., 135, 355, 1988
  10. Jalan VM, Bushnell CL, U.S. Patent, 4,316,059
  11. Pataki L, Venter RD, J. Electrochem. Soc., 134, 1416, 1987
  12. Maoka T, Electrochim. Acta, 33, 379, 1988
  13. Giner J, J. Electrochem. Soc., 111, 376, 1964
  14. Motoo S, Watanabe M, Furuga N, J. Electroanal. Chem., 160, 351, 1984
  15. Hyun JH, Augh KH, Rho YW, Shul YG, Lee TH, HWAHAK KONGHAK, 28(2), 205, 1990