Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.29, No.2, 176-182, 1991
졸-겔 변환변수가 SiO2의 물성에 미치는 영향
Effect of Sol-gel Transition Parameters of TEOS on the Properties of SiO2
TEOS(tetra-ethyl-ortho-silicate)의 졸-겔 변환변수가 SiO2의 특성에 미치는 영향을 알아보기 위해 초기 TEOS의 가수분해 반응에 의한 졸-겔 변환과정부터 최종적으로 실리카겔의 소성으로 얻어지는 SiO2까지의 전체적인 과정을 살펴보았다. TEOS의 초기 가수분해 변수는 겔의 형태와 특성에 영향을 주는 것 뿐만 아니라 소성후 겔의 겉보기 밀도와 표면적에도 영향을 주고 있었다. 산촉매하에서 반응온도가 높아짐에 따라 졸-겔의 섬유인출구간이 작아졌다. 폐쇄계의 경우 섬유가 인출이 되지 않았다. TEOS의 초기 가수분해에서 H2O의 증가는 가수분해속도를 증가시켰고 촉매는 염기의 경우가 산보다 빠른 가수분해를 나타내었다. 산의 경우 물의 증가는 bulk SiO2 겔에서 큰 1차입자를 형성한 반면 염기의 경우 물의 증가는 bulk 겔이 형성되기 전에 미세분말이 형성됨으로 해서 bulk 겔이 형성되지 않았다.
In order to evaluate the effects of sol-gel transition parameters of TEOS(tetra-ethyl-ortho-silicate)on properties of SiO2, we studied whole process from sol-gel transition of TEOS by hydrolysis reaction to a sintering step to form SiO2. Initial hydrolysis parameters of TEOS had an influence on gel shape and transition properties as well as on the bulk density and surface area of the final sintered products of SiO2. In acid catalyst system, with increasing hydrolysis reaction temperature, fiber drawing zone of sol-gel had become smaller. In closed system no fiber was obtained. Incease in H2O concentration enhanced the initial hydrolysis reaction of TEOS. The hydrolysis reaction was faster in base catalyst system than in acid catalyst system. In acid catalyst, increasing the water concentration resulted in formation of a big primary particles in bulk SiO2 gel. On the other hand, in base catalyst system increasing the water concentration didn’t form a bulk gel, which is due to the formation of segregated fine powders before the bulk gel transition.
[References]
  1. Moulik SP, Gosh BN, J. Ind. Chem. Soc., 40, 1963
  2. Johnson DW, J. Am. Ceram. Soc. Bull., 64, 1597, 1985
  3. Clark DE, Lannutti JJ, Ultrastructure Processing of Ceramics Glass and Composites, Wiley, New York, 1984
  4. Wenzel J, J. Non-Newton. Fluid Mech., 73, 693, 1985
  5. Klien LC, Garvey GJ, J. Non-Cryst. Solids, 45, 138, 1980
  6. Brinker CJ, Keefer KD, Schaefer DW, Assink RA, Kay BD, Aschley CS, J. Non-Cryst. Solids, 63, 45, 1984
  7. Artaki I, Sinha S, Irwin AD, Jonas J, J. Non-Cryst. Solids, 72, 391, 1985
  8. Orcel G, Hench L, J. Non-Cryst. Solids, 79, 177, 1986
  9. Keltz LW, Effinger NJ, Melpolder SM, J. Non-Cryst. Solids, 83, 353, 1986
  10. Sakka S, Kamiya K, J. Non-Cryst. Solids, 48, 31, 1982
  11. Partlow DP, Yoldas BE, J. Non-Cryst. Solids, 46, 153, 1981
  12. Zarzychi J, Prassas M, Phalippou J, J. Mater. Sci., 17, 3371, 1982
  13. Sakka S, Kozuka H, J. Non-Cryst. Solids, 100, 142, 1988
  14. Sakka S, Kamiya K, J. Non-Cryst. Solids, 48, 31, 1982
  15. Nogami M, Moriya Y, J. Non-Cryst. Solids, 37, 191, 1980
  16. Colby MW, Osaka A, Mackenzie JD, J. Non-Cryst. Solids, 82, 37, 1986