Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.29, No.2, 168-175, 1991
교반조에서 고체입자-액체간 물질전달
Mass Transfer in the Solid Particle-Liquid System with a Mechanically Agitated Vessel
고체입자와 액체간의 물질전달계수를 교반조에서 측정하였다. 입자의 크기가 100㎛ 이하의 작은 범위에서 측정한 물질전달계수는 문헌에서 제시한 상관관계와 큰 차이를 나타내었으며 입자의 크기가 감소함에 따라 분자 확산이론식에 접근하였다. 미세한 입자영역의 격류 교반에서의 Kolmogorov 이론을 적용하여 고체입자-액체간 물질전달기구를 해석할 수 있었으며 입자크기가 100㎛보다 큰 범위에서 100㎛보다 작은 범위까지 적용되는 경험식을 Beek Bakker 식을 사용한 근사식으로부터 구하였으며, 이에 대한 결과식은 실험치와 평균편차 5.6%이내에서 잘 일치하였다.
The mass transfer coefficients between fine particles and liquids were measured in an agitated vessel. As the particle’s diameter decreased, the values of mass transfer coefficient deviated below the pre-vious correlation for large particles and approached the value of the theoretical molecular diffusion theory. The mass transfer with fine particles in the turbulent agitation was analysed with the conventional concept of a specific power group from the Kolmogorov theory. An approximate solution for the mass transfer in the wide range of experimental variables was also obtained by using the Beek-Bakker model with which the experimental data were in good agreement.
[References]
  1. Hariott P, AIChE J., 8, 93, 1962
  2. Nagata S, Nishikawa M, Proceedings of First Pacific Chemical Engineering Congress, Session, 18, 301, 1972
  3. Levins DM, Glastonbury JR, Trans. Inst. Chem. Eng., 50, 132, 1972
  4. Sano T, Yamaguchi N, Adachi T, J. Chem. Eng. Jpn., 7, 255, 1974
  5. Yagi H, Iwazawa A, Sonobe A, Matsubara T, Hikita H, Ind. Eng. Chem. Fundam., 23, 153, 1984
  6. Hixon AW, Baum SJ, Ind. Eng. Chem., 36, 528, 1944
  7. Bakker JJ, Treybal RE, AIChE J., 6, 289, 1960
  8. Sykes P, Gomezplata A, Can. J. Chem. Eng., 45, 189, 1967
  9. Nienow AW, Can. J. Chem. Eng., 47, 248, 1969
  10. Boon-Long S, Laguerie C, Couderc JP, Chem. Eng. Sci., 33, 813, 1978
  11. Lal P, Kumar S, Upadhyay SN, Upadhyay YD, Ind. Eng. Chem. Res., 27, 1246, 1988
  12. Asai S, Konishi Y, Sasaki Y, J. Chem. Eng. Jpn., 21, 107, 1988
  13. Davis JJ, "Turbulent Phenomena," Academic Press, New York, p. 53, 1972
  14. Rushton JH, CostichEW, Everett HJ, Chem. Eng. Prog., 46, 395, 1950
  15. Zwirtering TN, Chem. Eng. Sci., 8, 244, 1958
  16. Wichterle K, Chem. Eng. Sci., 43, 467, 1988
  17. Reid RC, Plausnitz JM, Sherwood TK, "The Properties of Gases and Liquids," 3rd ed., McGraw-Hill, New York, p. 591, 1977
  18. Cussler EL, Cambridge Univ. Press, New York, p. 118, 1984
  19. Mydlarz J, Jones AG, Millan A, J. Chem. Eng. Data, 34, 124, 1989
  20. Beek WJ, Bakker CAP, Appl. Sci. Res., A10, 241, 1961
  21. Churchill SW, Usagi R, AIChE J., 18, 1121, 1972
  22. Byers CH, King CJ, AIChE J., 13, 628, 1967
  23. Hatanaka J, Chem. Eng. J., 28, 127, 1989
  24. Asai S, Hatanaka J, Kimura T, Yoshizawa H, Ind. Eng. Chem. Res., 26, 483, 1987
  25. Park SW, Yang SS, Kim JH, Asai S, HWAHAK KONGHAK, 27(6), 744, 1989
  26. Park SW, Kim SS, Han SB, HWAHAK KONGHAK, 28(3), 327, 1990
  27. Brian PLT, Hales HB, Sherwood TK, AIChE J., 15, 727, 1969
  28. Miller DN, Ind. Chem. Process Res. Dev., 10, 365, 1971
  29. Kikuchi K, Sugawara T, Ohashi H, Chem. Eng. Sci., 43, 2533, 1988