Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.29, No.1, 1-10, 1991
역삼투용 복합막과 비대칭막의 용존염 분리 특성에 관한 비교 연구
Separation Characteristics of Dissolved Salt(NaCl) with Asymmetric and Composite Membranes for Reverse Osmosis
복합막과 비대칭막에 대한 NaCl용액 투과 실험 data를 막투과 모델식에 적용하여 모델식 간의 유사성을 조사하고 각 막의 분리 특성을 비교 연구하였다. NaCl 용액 농도 15000mg/l 이하에서 배제율(R) 대 투과속도(Jv)를 도식화학 결과, 복합막과 비대칭막의 실험값들은 Pusch의 선형과 비선형모델식에 적용하여 막의 용질 반사계수들을 검토한 결과 선형식의 용질 반사계수값보다는 비선형모델식인 Spigler-Kedem model의 용질 반사계수값들을 기준으로 고려하면 비선형 관계식에 더 타당하였다. 한편, Spigler-Kedem 비선형식은 지수항이 아주 작은 경우, Taylor 급수에 의해 선형식인 solution-diffu-sion 모델식으로 전환되었다. 복합막의 배제율이 NaCl 용액 농도 10000mg/l 에서 비대칭막(SEPA-97)의 배제율보다 작게는 6%(2.45MPa)에서 크게는 34%(0.98MPa)까지 우수하며 실험에 사용된 복합막 중 FT-30과 SU-700막이 투과속도 및 배제율면에서 좋은 성능을 나타내었다.
The similarity between three models by applying experimental data of NaCl solution per-meation of composite and asymmetric membrane to the membrane transport models and the separation characteristics of each membrane was studied. The plot of rejection coefficient (R) vs. total volume flux(Jv) showed that the experimental data were in accordance with the linear and nonlinear model below the NaCl solution concentration of 15000mg/l. The reflection coefficients of the composite and asymmetric membrane showed Spigler-Kedem nonlinear model to have more validity compared with the linear model. In case, the exponential term in nonlinear model is very small as to be neglected, the nonlinear model is converted into the solution-diffusion model using the Taylor-series. The compo-site membrane showed better rejection rates as high as 6%(2.45MPa) to 34%(0.98MPa) than those of asymmetric membrane(SEPA-97) below the NaCl solution concentration of 10000mg/l. among the composite membranes used in the experiment, FT-30 and SU-700 composite membranes gave the best performance in respect to the permeation flux and selectivity.
[References]
  1. Mears P, "Membrane Separation Process," Elsevier Scientific Publishing Company, 1976
  2. Lloyd DR, "Materials Science of Synthetic Membranes," American Chemical Society, 1985
  3. Sourirajan S, "Reverse Osmosis/Ultrafiltration Process Principles," National Research Council of Canada, 1985
  4. Kesting RE, "Synthetic Polymeric Membranes," McGraw-Hill, Co., New York, 1971
  5. Hwang ST, "Membranes in Separations," John Wiley and Sons, 1975
  6. Kesting RE, "Synthetic Polymeric Membranes," 2nd ed., John Wiley and Sons, 1985
  7. Choi CK, Chem. Ind. Technol., 7(1), 100, 1989
  8. Lee KH, "Polymer Membrane Technology," KAIST, 1989
  9. Katchalsky A, Curran PF, "Non Equilibrium Thermodynamics in Biophysics," Harvard University Press, 1965
  10. Pusch W, Ber Bunserges Phys. Chem., 81(3), 269, 1977
  11. Pusch W, Ber Bunserges Phys. Chem., 81(3), 864, 1977
  12. Lacey RE, Loeb S, "Industrial Processing with Membranes," Wiley-Interscience, New York, 1972
  13. Toray Ind. Inc.; "Toray Romembra SU-700 Series," Tokyo, Japan, 1987
  14. Film Tec Co.; "Technical Bulletin," Minneapolis, U.S.A., 1985
  15. UOP Inc.: "TEC Reverse Osmosis Magnum Element Specifications," CA, U.S.A.