Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.28, No.6, 691-698, 1990
열분해 조건에 따른 석탄 세공구조 변화
Change in Pore Structure of Chars Obtained under Different Pyrolysis Conditions
열분해 조건에 따른 생성촤의 세공구조 변화를 알아보기 위하여, 국내 동원무연탄, 호주 Coalex(HD)역청탄, 호주 Victoria 준역청탄 및 파키스탄 Lakla 갈탄을 사용한 실험을 하였다. 열분해 최종온도에 따른 영향을 알아보기 위하여 열분해 최종온도 800, 925, 1000℃에서, 열분해 가열속도에 따른 영향을 알아보기 위하여 가열속도 2, 10, 30, 100℃/min 및 900℃에서 등온 열분해(6000℃/min)조건에서 시료촤가 만들어졌다. 시료촤의 micropore 표면적, 부피분포 및 평균세공직경과 macropore 표면적, 부피 등이 측정되었다. 석탄세공부피는 macropore의 영향을 크게 받았고, 세공표면적은 micropore의 영향을 지배적으로 받았다. 열분해 최종온도가 낮을수록, 열분해 가열속도가 클수록, 석탄등급이 낮을수록 촤의 세공표면적 및 micropore 부피는 증가하였다.
The effects of pyrolysis conditions on the pore structure of chars were studied for Dong Won an-thracite, Australia Coalex(HD) bituminous coal, Victoria subbituminous coal and Pakistan Lakla lignite. Sample chars were prepared under the condition of final pyrolysis temperatures of 800, 925, 1000℃, and pyrolysis heating rates of 2, 10, 30, 100℃/min and 900℃ isothermal(about 6000℃/min). Micropore surface area, micropore volume distribution, mean pore diameter, and macropore volume and macropore surface area of chars were measured. Pore volume of chars was affected by macropore of chars, and pore surface area was largely affected by micropore of chars. The pore surface area and the pore volume of char were increased at the higher final pyrolysis temperature, the higher pyrolysis heating rates and lower the rank of coals.
[References]
  1. Jenkins RG, Nandi SP, Walker PL, Fuel, 52, 288, 1973
  2. Koranyi A, Williams SG, Thermochim. Acta, 82, 103, 1984
  3. Hashimoto K, Miura K, Yoshikawa F, Imai I, Ind. Eng. Chem. Process Des. Dev., 18, 72, 1979
  4. Singla PK, Miura S, Hudgins RR, Silveston PL, Fuel, 62, 645, 1983
  5. Bak YC, Son JE, HWAHAK KONGHAK, 25(6), 546, 1987
  6. 박영철, 양현수, 손재익, 에너지 R&D, 10, 36, 1988
  7. 강석호, "분체공학," 희중각, p. 89, 1987
  8. Marsh H, Wynne-Jones WFK, Carbon, 1, 269, 1964
  9. Marsh H, Siemieniewska T, Fuel, 44, 355, 1965
  10. Medek J, Fuel, 56, 131, 1977
  11. Walker PL, Kini KA, Fuel, 44, 453, 1965
  12. Dubinin MM, Chem. Rev., 60, 235, 1960
  13. Adschiri T, Furusawa T, Chem. Eng. Sci., 42, 1313, 1987
  14. LEE IC, Korean J. Chem. Eng., 4(2), 194, 1987
  15. Toda Y, Fuel, 52, 99, 1973