Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.28, No.5, 576-585, 1990
GaAs의 액상식각 반응기구에 관한 연구
Study on the Reaction Mechanism of GaAs Etching in Aqueous Solutions
GaAs(100)을 HF-산화제-H2O 홉합용액에서 식각시켜 식각반응을 식각용액의 산화환원전위와 반도체의 띠이론을 이용하여 설명하였다. 식각반응속도는 n-GaAs와 p-GaAs에 상관없이 거의 같은 속도를 보였다. 식각용액의 산화환원전위와 GaAs의 원자가띠간의 에너지차가 크면 클수록 식각반응이 활성화에너지는 낮아지며 식각속도는 빨라짐을 보였다. 파장이 632.8mm인 He/Ne레이저광을 GaAs의 표면에 조사하면서 레이저식각시킨 결과 n-GaAs의 식각속도는 크게 증가하였으나 p-GaAs는 전혀 영향을 받지 않았다. GaAS의 반응표면에 생성되는 전공은 식각반응에 중요한 역할을 하며, 표면전공의 농도가 증가하면 할수록 식각반응속도는 증가함을 보였다. 실험에 사용한 식각용액에서는 거의 이방성식각을 얻을 수 있었다.
The etching reaction of GaAs(100)in HF-oxidizing agant-H2O mixed soultions was explained using the redox potential of etching solution and the band theory of semiconductor. The etch rates were similar for n-type and p-type GaAs. The higher the energy difference between the valence band of GaAs and the redox potential of etching so-lution was, the lower the activation energy of the etching reaction was and the etch rate of GaAs was rapider. Laser-in-duced etching of GaAs(100) with 632.8mm He/Ne laser illumination showed that the etch rate for n-GaAs was dramati-cally increased while that for p-GaAs was not responsive to laser illumination. The holes formed at the surface of CaAs played an important role in the etching reaction of GaAs. The etch rate increased with the increase of the hole concen-tration at the surface. The anisotropic etching was obtained by proper use of the etching solutions in the experiment.
[References]
  1. Elliot DJ, "Integrated Circuit Fabrication Technology," McGraw-Hill, NY, 245-259, 1980
  2. Sawin HH, Solid State Technol., 211, 1985
  3. Downey DF, Bottoms WR, Hanley PR, Solid State Technol., 121, 1981
  4. Booinger D, Iiga S, Matsumoto O, Solid State Technol., 111, 1984
  5. Booinger D, Liga S, Matsumoto O, Solid State Technol., 167, 1984
  6. Frieser RG, Montillo FJ, Zingerman NB, Chu WK, Mader SR, J. Electrochem. Soc., 130(11), 2238, 1983
  7. Oehrlein GS, Tromp RM, Tsang JC, Lee YH, Petrillo EJ, J. Electrochem. Soc., 132(6), 1442, 1985
  8. Vossen JL, Werner K, "Thin Film Process," Academic Press, 401-496, 1978
  9. Adachi S, Oe K, J. Electrochem. Soc., 130(12), 2427, 1983
  10. Dyment JC, Rozgonyi GA, J. Electrochem. Soc., 118, 1346, 1971
  11. Mori Y, Watanabe N, J. Electrochem. Soc., 125, 1510, 1978
  12. O'Commor JM, Dvorsky EF, Hier HS, Reif WP, J. Electrochem. Soc., 135(1), 190, 1988
  13. Huo DTC, Yan MF, Wynn JD, Wilt DP, J. Electrochem. Soc., 136(10), 3094, 1989
  14. Majima HM, Met. Trans. B, 11B, 209, 1980
  15. Valverde N, Wagner C, Ber Bunsen-Gesellschaft, 80, 330, 1976
  16. Leblanc SE, Fogler HS, Proceedings of 3rd World Congr. of Chem. Eng. Vol. IV, 385, 1986
  17. Gerischu H, Mindt W, Electrochim. Acta, 13, 1329, 1968
  18. vandeVen J, vanden Meerakker JEAM, Kelly JJ, J. Electrochem. Soc., 132(12), 3020, 1985
  19. Kelly JJ, vandeVen J, vanden Meerakker JEAM, J. Electrochem. Soc., 132(12), 3026, 1985
  20. Decker F, Pettinger B, Gerischer H, J. Electrochem. Soc., 130(6), 1336, 1983
  21. Kelly JJ, Noyyen PHL, Electrochim. Acta, 29(5), 589, 1984
  22. Schimmel DG, Elind MJ, J. Electrochem. Soc., 125(1), 152, 1978
  23. Rao CNR, Narasimhan PT, George MV, Mahanty J, A Handbook of Chemistry and Physics, 3rd ed., Affiliated East-West Press PVT LTD, New Delhi-Madras, 175, 1976
  24. Pierret RF, Neudeck GW, "Modular Series on Solid State Devices: I. Semiconductor Fundamental," Addison-Wesley Publishing Co., Chapter 2, 1985
  25. Weast RC, Astle MJ, "CRC Handbook of Chemistry and Physics, 60th ed., CRC Press, E-82, 1979
  26. Willardson RK, Beer AC, "Semiconductors & Semimetals: II. Physics of III-V Compounds," Academic Press, NY, 275, 1966
  27. Memming R, J. Electrochem. Soc., 125(1), 117, 1978
  28. Morrison SR, "Electrochemistry of Semiconductor and Oxidized Metal Electrodes," Plenum Press, NY, 1980
  29. Sangwal K, "Etching of Crystals," Elsevier Sci. Publishing Co., NY, 1987