Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.28, No.5, 536-546, 1990
알칼리조촉매를 사용한 Zn-Oxide 담지 촉매상에서 메탄의 Oxidative Coupling 반응특성
The Oxidative Coupling of Methane over Supported Zine Oxide Catalyst with Alkali Promotes
조성과 담체 및 알칼리조촉매를 달리한 Zn-Oxide 촉매상에서 메탄의 oxidative coupling 반응에 의한 에틸렌과 에탄의 합성반응을 연구하였다. 담지촉매의 산점은 에틸렌과 에탄의 선택도를 감소시켰으며, 산점이 나타나지 않은 Zn-Oxide/α-Al2O3촉매의 선택도가 우수하였고 Zn-Oxide의 최적 담지량은 60wt%일 때이었다. Zn-Oxide/α-Al2O3 촉매계에 할로겐족 원소가 함유된 알칼리금속 조촉매들을 첨가할 때의 활성순서는 NaBr>NaCl>NaI>NaF 로 나타났으며, 에틸렌의 생성에 Br과Cl 라디칼의 역할이 제시되었지만 NaF 및 알칼리금속염(NaNO3, Li2CO3, KNO3)은 부촉매의 역할을 하였다. NaCl(30wt%)/Zn-Oxide(60wt%)/α-Al2O3 촉매상에서 속도론적 고찰을 통하여, CH3 라디칼의 생성에 관여하는 산소종은 표면상의 이원자산소인 O22- 나 O2- 로 제시할 수 있었고, 활성화에너지는 약 39Kcal/mole 이었다.
The oxidative coupling of methane to ethylene and ethane was studied over Zn-Oxide catalysts with different compositions of catalysts, different supports and promoters. The selectivity for C2(C2H4+C2H6) decreased with an increase in the acid sites of supported catalysts. The Zn-Oxide/α-Al2O3 catalyst without acid sites showed that a good C2(C2H4+C2H6) selectivity. The optimal loading of Zn-Oxide was 60wt%. When alkali halide promoters were added to Zn-Oxide/α-Al2O3, the activity order was NaBr>NaCl>Nal>NaF. Br and Cl radicals might play an important role in formation of ethylene, but NaF and alkali metal salts(NaNO3, Li2CO3, KNO3)played a role of inhibitor. From kinetic studies on oxidative coupling of methane over NaCl(30wt%)/Zn-Oxide(60wt%)/α-Al2O3, the oxygen species responsible for formation of CH3, radical was suggested to be diatomic oxygen(O22- or O2-)on the surface. The activation energy was ca. 39kcal/mole.
[References]
  1. Lee JS, Oyama ST, Catal. Rev.-Sci. Eng., 30, 249, 1988
  2. Anderson JR, Appl. Catal., 47, 177, 1989
  3. Pitchai R, Klier K, Catal. Rev.-Sci. Eng., 28(1), 13, 1986
  4. Agarwal SK, Migone RA, Marcelin G, Appl. Catal., 53, 71, 1989
  5. Martin GA, Bates A, Ducarme V, Mirodates C, Appl. Catal., 47, 287, 1989
  6. Lo MY, Agarwal SK, Marcelin G, J. Catal., 112, 168, 1988
  7. Roos JA, Korf SJ, Veehof RHJ, Vanommen JG, Ross JRH, Appl. Catal., 52, 131, 1989
  8. Otsuka K, Liu Q, Hatano M, Morikawa A, Chem. Lett., 903, 1986
  9. Lane GS, Wolf EE, Proc. 9th Int. Congr. Catal., 2, 944, 1988
  10. Ito T, Lunsford JH, Nature, 311, 721, 1985
  11. Yamagata N, Tanaka K, Sasaki S, Okazaki S, Chem. Lett., 81, 1987
  12. Otsuka K, Jinno K, Morikawa A, J. Catal., 100, 353, 1986
  13. Keller GE, Bhasin MM, J. Catal., 73, 9, 1982
  14. Hinsen VW, Baerns M, Chem. Ztg., 107, 223, 1983
  15. Otsuka K, Hatano M, Komatsu T, Bibby DM, "Methane Conversion," Elsevier, Amsterdam, 383, 1988
  16. Aika K, Lunsford JH, J. Phys. Chem., 81, 1393, 1977
  17. Ohtsuka Y, Kuwabara M, Tomita A, Appl. Catal., 47, 307, 1989
  18. Anshits AG, Sokolovskii VD, React. Kinet. Catal. Lett., 37, 397, 1988
  19. Zhang HS, Wang JX, Driscoll DJ, Lunsford JH, J. Catal., 112, 366, 1988
  20. Ito T, Wang JH, Lin CH, Lunsford JH, J. Am. Chem. Soc., 107, 5062, 1985
  21. Satterfield CN, "Heterogeneous Catalysis in Practice," 1st ed., McGraw-Hill, New York, p. 126, 1980
  22. Otsuka K, Liu Q, Morikawa A, Inorg. Chem. Acta, 118, L23, 1986
  23. Hinsen W, Bytyn W, Baerns M, Proc. 8th Int. Congr. Catal., Vol. 3, Dechema, Frankfurt am Main, p. 581, 1984
  24. Weissman M, Benson SW, Int. J. Chem. Kinet., 16, 307, 1984
  25. Dean JA, "Langes's Handbook of Chemistry," 12th ed., McGraw-Hill, New York, 1979
  26. Driscoll DJ, Martir W, Wang JX, Lunsford JH, J. Am. Chem. Soc., 107, 58, 1985
  27. Otsuka K, Jinno K, Inorg. Chim. Acta, 121, 237, 1986