Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.28, No.5, 493-498, 1990
삼상 슬러리 이중기포탑내 슬러리 순환류의 축방향 혼합특성에 관한 연구
On the Axial Mixing Characteristics of Circulating Slurry-Suspension in the Three Phase Slurry Bubble Column with a Draft Tube
우수한 혼합효과를 지닌 이중기포탑내 현탁액이 기포교반에 의하여 순환될 때의 축방향 혼합특성을 규명하기 위하여 평균입경이 100㎛이하인 미세한 고체입자가 첨가된 현탁액에 대하여 실험을 행하였다. 실험결과 축방향 확산계수는 공탑기체속도와 입자농도의 증가에 따라 증가하였고, 실험범위 전반에 걸쳐서 순수용액의 경우보다 크게 나타났지만 입자크기에 대하여서는 뚜렷한 경향을 나타내지 않았다. 이를 설명하기 위하여 에너지 수지로부터 산출한 탑내 액상의 단위 질량당 에너지 소멸속도를 Kolmogo-roff의 난류등방성이론과 조합하여 구한 축방향 확산계수의 계산값과 실험값을 비교한 결과 실험범위내의 전반적인 경향을 잘 설명할 수 있었다.
Axial mixing characteristics in the circulating slurry suspension by bubble-agitation in a bubble col-umn with a draft tube were studied in a 8.90cm I.D×150cm high acryl column. Axial dispersion coefficient increased with the rise of superficial gas velocity and the concentration of particles and was larger than that without the addition of particles. But tendency with the change of paricle size was not clear. To explain these phenomena, the energy dissipation rate estimated from the energy balance was combined with Kolmo-goroff’s isotropic turbulence theory to predict the theoretical axial dispersion coefficient. This theoretical equation could explain the tendency of the experimental data of axial dispersion coefficient very well.
[References]
  1. Karolyi J, Zulai A, Birthler R, Spitzner H, Int. Chem. Eng., 3, 597, 1963
  2. Shah YT, "Gas-Liquid-Solid Reactor Design," McGraw-Hill, N.Y., 1979
  3. Kim SD, Kim CH, J. Chem. Eng. Jpn., 16, 172, 1983
  4. Joshi JB, Shah YT, Albal RS, Ruether JA, "Oxydesulfurization of Coal," Report to Ind. Eng. Chem. Fund., 1981
  5. Leistner G, Muller G, Sell G, Bauer A, Chem. Ing. Tech., 51, 288, 1979
  6. Zlokarnik M, Chem. Eng. Sci., 34, 1265, 1969
  7. Hirata A, Hosaka Y, Umezawa H, World Congress III of Chem. Eng., Tokyo, 1986
  8. Fan LS, Fujie K, Long TR, Tang WT, World Congress III of Chem. Eng., Tokyo, 1986
  9. Kelkar BG, Shah YT, Ind. Eng. Chem. Process Des. Dev., 23, 308, 1984
  10. Kojima H, Anjyo H, Mochizuki Y, J. Chem. Eng. Jpn., 3, 19, 1986
  11. Bischoff KB, Levenspiel O, Chem. Eng. Sci., 17, 257, 1962
  12. Michelsen ML, Ostergaard K, Chem. Eng. J., 1, 37, 1970
  13. Levensiel O, "Chemical Reaction Engineering," Wiley, N.Y., 1972
  14. Eissa SH, Schugerl K, Chem. Eng. Sci., 30, 1251, 1975
  15. Kara S, Kelkar BG, Shah YT, Carr NL, Ind. Eng. Chem. Process Des. Dev., 21, 580, 1982
  16. Kolmogoroff AN, C.R. Akad. Nauk U.S.S.R., 32, 16, 1941
  17. Hinze JO, "Turbulence," McGraw-Hill, N.Y., 1959
  18. Baird MHI, Rice RG, Chem. Eng. J., 9, 171, 1975
  19. Walter JF, Blanch HW, Chem. Eng. Commun., 19, 243, 1983
  20. Park CJ, Doh DS, HWAHAK KONGHAK, 27(6), 845, 1989
  21. Park CJ, Doh DS, HWAHAK KONGHAK, 27(4), 459, 1989
  22. Shah YT, Kelkar BG, Godbole SP, Deckwer WD, AIChE J., 28, 353, 1982
  23. Kelkar BG, Shah YT, Carr NL, Ind. Eng. Chem. Process Des. Dev., 23, 308, 1984