Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.28, No.4, 463-469, 1990
Mn/Zr 복합산화물 촉매의 구조 및 CO수소화반응 특성
Structure of Mn/Zr Oxide Catalysts and CO Hydrogenation
침전법으로 Mn/Zr 복합산화물 촉매를 제조하여 촉매 특성과 CO 수소화반응에 대하여 연구했다. 촉매의 특성은 질소흡착과 XRD, ESCA에 조사하였다. 소성온도의 증가에 따라 무정형의 지르코늄산화물은 monoclinic상으로 결정화되었고, 결정크기와 세공크기가 커졌다. 망간의 첨가는 지르코늄산화물의 결정화를 늦추어 주었으며, 촉매의 표면적을 증가시켰다. 또한 Mn/Zr 복합산화물 촉매에서 망간은 대부분 촉매 표면에 존재하는 것으로 나타났다. 망간산화물과 지르코늄산화물은 둘 다 높은 올레핀 선택도를 가지고 있었으며, Mn/Zr 복합산화물 촉매의 활성은 망간산화물에서 나온다. Mn/Zr 복합산화물 촉매에서 solid solution의 형성은 C2-C4 분율을 저하시키는 것으로 나타났다.
Mn/Zr oxide catalysts having variation in Mn content were prepared by precipitation method, and their structure and catalytic properties were studied by means of nitrogen adsorption, XRD, ESCA and the CO hydro-gentation reaction. After calcinating the amorphous zirconium oxide, it crystallized into the monoclinic phase, resulting in increases in the crystallite size and the pore size. Introduction of manganese oxide into zirconium oxide retarded the crystallization of the amorphous zirconium oxide and increased the specific surface area of the catalyst. The surface of Mn/Zr oxide catalysts was appreciably enriched in manganese oxide and zirconium oxide exhibited high selectivities toward short chain olefins. Active site of Mn/Zr oxide catalysts was manganese oxide finely dispersed on the surface of zirconium oxide. However, the formation of solution in Mn/Zr oxide catalysts decreased selectivities of C2-C4 hy-drocarbons.
[References]
  1. Dry ME, "Catalysis-Science and Technology, Vol. 1," by Anderson, J.R. and Boudart, M. (eds.), Springer-Verlag, N.Y., p. 159, 1981
  2. Roper M, "Catalysis in C1 Chemistry," by Keim, W. (ed.), D. Reidel, Dordrecht, p. 41, 1983
  3. Klier K, Adv. Catal., 31, 243, 1982
  4. Calvreley E, Anderson RB, J. Catal., 104, 434, 1987
  5. Kung HH, Catal. Rev.-Sci. Eng., 22, 235, 1980
  6. Baker JE, Burch R, Golunski SE, Appl. Catal., 53, 279, 1989
  7. Smith KJ, Anderson RB, Can. J. Chem. Eng., 61, 40, 1983
  8. Roper M, Keim W, Seibring J, Kollegorgen G, European Patent, 208,102, 1987
  9. Keim W, Falter W, Catal. Lett., 3, 59, 1989
  10. Res. Discl., 240, 173, 1984
  11. Denise B, Sneeden RPA, Beguin B, Cherifi O, Appl. Catal., 30, 353, 1987
  12. Denise B, Sneeden RPA, Appl. Catal., 28, 235, 1986
  13. Ichikawa M, J. Chem. Soc.-Chem. Commun., 566, 1978
  14. Mazzocchia C, Tempesti E, Gronchi P, Giuffre L, Zanderighi L, J. Catal., 111, 345, 1988
  15. Ryndin YA, Hicks RF, Bell AT, J. Catal., 70, 287, 1981
  16. Yokoyama A, Komiyama H, Inoue H, Chem. Lett., 195, 1983
  17. Betta RAD, Piken AG, Shelef M, J. Catal., 40, 173, 1975
  18. Bruce LA, Mathews JF, Appl. Catal., 4, 353, 1982
  19. Subbarao EC, "Advances in Ceramics, Vol. 3," by Heuer, A.H. and Hobbs, L.W. (eds.) Columbus, Ohio, p. 1, 1981
  20. Thompson MA, Young DR, McCartney ER, J. Am. Ceram. Soc., 56, 648, 1973
  21. Livage J, Doi K, Mazieres C, J. Am. Ceram. Soc., 51, 349, 1968
  22. Lowell S, Shields JE, "Powder Surface Area and Porosity," Chapman and Hall, New York, p. 62, 1984
  23. Maruya K, Maehashi T, Haraoka T, Narui S, Asakawa Y, Domen K, Onishi T, Bull. Chem. Soc. Jpn., 61, 667, 1988
  24. Maehashi T, Maruya K, Domen K, Aika K, Onishi T, Chem. Lett., 747, 1984