Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.28, No.4, 411-416, 1990
이온교환된 X형 및 Y형 제올라이트의 탈알루미늄에 대한 X선 광전자분광학적 해석
X-ray Photoelectron Spectroscopic Analysis for Dealumination of lon Exchanged Zelite -X and -Y
1N 금속염화물 수용액을 사용한 이온교환반응에서 X형 및 Y형 제올라이트로부터 Al 원자가 빠져나가는 탈알루미늄 현상에 대해 양이온의 영향을 조사하였다. X선 광전자분광법(XPS)과 X선 형광분석법(XRF)을 통해 Na+, Ca2+, Fe2+, Fe3+가 교환된 제올라이트의 탈알루미늄을 연구하였다. 이온교환된 제올라이트의 내부조성과 표면에서의 Al/Si 비를 양이온의 pKh 값과 관련지어 연구하였다. 특히 제올라이트 표면에서의 Al/Si 비를 얻거나 알루미늄원자의 2p궤도 전자결합 에너지를 결정하기 위하여 XPS법이 이용되었다. 실험적인 결과로서 내부보다는 표면의 Al/Si 비가 작았으며 XPS를 통해서 Al2p 전자의 전자결합에너지가 표면의 알루미늄 함량감소에 따라 비례적으로 감소함을 알 수 있었다. 이같은 사실은 표면에서의 Al/Si 비의 감소와 골격내 Al-O 결합의 결합력 약화가 직접적으로 서로 연관되어 있기 때문이다.
The chemical extraction of Al atoms from X and Y zeolites during ion-exchanged procedures using 1N metal chloride solution was studied to investigate the effect of cation on dealumination. Correlated X-ray photoelectron spectroscopy(XPS) and X-ray fluorescence spectroscopy(XRF) studies have been carried out on the dealumination of Na+, Ca2+, Fe2+ -and Fe3+ -exchanged zeolites. The Al/Si ratios of bulk and surface on ion-exchanged zeolite were studied as a function of pKh. Especially, XPS has been used to obtain the Al/Si ratio of zeolite surface and to determine the binding energy(Eb) of Al2p electron. We found that the Al/Si ratio of the surface is less than that of the bulk. The XPS results show that decreasing aluminum content of surface proportionally decrease the binding energy of Al2p elec-tron. It has been also derived that the decrease of surface Al/Si ratio is directly related to the weakening of Al-O bond in framework.
[References]
  1. Break DW, "Zeolite Molecular Sieves," John Wiley & Sons, New York, 1974
  2. Rabo JA, "Zeolite Chemistry and Catalysis," ACS Monograph 171, Washington D.C., 1976
  3. Decanio SJ, Sohn JR, Fritz PO, Lunsford JH, J. Catal., 101, 132, 1986
  4. Arribas J, Corma A, Fornes V, Melo F, J. Catal., 108, 135, 1987
  5. Aparicio LM, Dumestic JA, Fang SM, Long MA, Ulla MA, Millman WS, Hall WK, J. Catal., 104, 381, 1987
  6. Kuhl GH, Zeolites, 5, 4, 1985
  7. Heo NH, Patalinghug WC, Seff K, J. Phys. Chem., 90, 3931, 1986
  8. Kim JT, Kim MC, Okamoto Y, Imanaka T, J. Catal., 115, 319, 1989
  9. Barthomeuf D, Beaumont R, J. Catal., 26, 218, 1972
  10. Tsutsumi K, Kajiwara H, Takahashi H, Bull. Chem. Soc. Jpn., 47, 801, 1974
  11. No KT, Chon HZ, Lee TK, John MS, J. Phys. Chem., 85, 2065, 1981
  12. Barthomeuf D, J. Phys. Chem., 88, 42, 1984
  13. Sohn JR, Decanio SJ, Lunsford JH, Odonell DJ, Zeolites, 6, 225, 1986
  14. Szostak R, Thomas TL, J. Catal., 101, 549, 1986
  15. Melchoir MT, Vaughan DEW, Jacobson AJ, J. Am. Chem. Soc., 104, 4859, 1982
  16. Fichtner SH, Lohse U, Engelhardt G, Patzelova V, Cryst. Res. Tech., 19, K1, 1984
  17. Beyerlein RA, McVicker GB, Yacullo LN, Ziemiak JJ, J. Phys. Chem., 92, 1967, 1988
  18. Finster J, Lorentz P, Chem. Phys. Lett., 50, 223, 1977
  19. Barr TL, Lishka MA, J. Am. Chem. Soc., 108, 3178, 1986
  20. Jacobs PA, "In Structure and Reactivity of Modified Zeolites," Elsevier, Amsterdam, 1984
  21. Contarini S, Kevan L, J. Phys. Chem., 90, 1630, 1986
  22. Contarini S, Michalik J, Narayana M, Kevan L, J. Phys. Chem., 90, 4586, 1986
  23. Okamoto Y, Tomioka H, Kaoth Y, Imanaka T, Teranishi S, J. Phys. Chem., 84, 1833, 1980
  24. Holl Y, Touroude R, Maire G, Muller A, Engelhard PA, Grosmangin J, J. Catal., 104, 202, 1987
  25. Yong YS, Howe RF, Hughes AE, Jaeger H, Sexton BA, J. Phys. Chem., 91, 6331, 1987
  26. Barr TL, Chen LM, Mohsenian M, Lishka MA, J. Am. Chem. Soc., 110, 7962, 1988
  27. Carlson TA, "Photoelectron and Auger Spectroscopy," 2nd ed., Plenum Press, New York, 1978
  28. Huheey JE, "Inorganic Chemistry," 3rd ed., Happer & Row Co., New York, 1983
  29. Rees L, J. Chem. Soc.-Faraday Trans., 83, 1531, 1987
  30. Barrer RH, "Hydrothermal Chemistry of Zeolites," Academic Press, London, 1982