Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.28, No.3, 320-326, 1990
유동층 연소로에서 국내 저열량 무연탄의 마모특성
Attrition Characteristics of Domestic Low Grade Antracite Coal in a Fluidized Bed Combustor
Bench-scale 유동층 연소로에서 국내 저열량 무연탄의 마모특성을 고찰하였다. 조업변수로서 과잉기체속도(U-Umf), 유동층 온도, 과잉공기율이 적용되었으며 주요 마모특성으로서 입도분포, 성분분석, 탁소마모율, 탄소마모유출비 등을 측정 및 고찰하였다. 실험결과 마모에 의한 탄소유출은 공급된 탄소량의 5-15%에 달하며 과잉기체속도에 비례하고 유동층 온도 및 과잉공기율에 반비례하는 것으로 나타났다. 또한 국내 저열량 무연탄은 반응성(reactivity)이 낮아 비교적 높은 유동층내 carbon load를 갖게 되므로 다른 탄종에 비해 높은 탄소마모를 보았으며, 탄소마모유출비는 다음과 같은 상관식으로 표시되었다. Yea=38.05+13.20(U-Umf)-0.04(Tb)-6.79(Xe)
Attrition characteristics of domestic low grade anthracite coal have been studied in a bench-scale fluid-ized bed combustor. As operating variables, excess gas velocity(U-Umf), bed temperature, and excess air ratio were ap-plied. Attrition characteristics such as carbon attrition rate, ratio of elutriated attrited carbon to feed carbon, as well as analysis of compositions and size distributions of coals and ashes were investigated. The experimental results show that the carbon elutriation due to attrition is in the range of 5-15% of the feed carbon, increases with the excess gas velocity, and decreases with increasing bed temperature and excess air ratio. Also, the carbon attrition rate of domestic low grade anthracite coal is shown to be greater than that of other type of coals because of the higher in-bed carbon load resulting from their lower reactivity. The following correlation has been suggested for the ratio of elutriated attrited carbon to feed carbon. Yea=38.05+13.20(U-Umf)00.04(Tb)-6.79(Xe)
[References]
  1. Well JM, Byrd JR, Krishnan RP, "Simulation of Large Scale Atmospheric Fluidized Bed Combustion System," Proc. of the 7th Int. Conf. on FBC, 2, 1107, 1982
  2. Rajan RR, Wen CY, AIChE J., 26(4), 642, 1980
  3. 손재익, "저질탄의 유동층 연소기술 및 공해방지에 관한 연구(II)," 연구보고서 KE-82T-8, 한국동력자원연구소, 1982
  4. 문상흡, "저질탄의 유동층 연소기술 개발연구(III)," 연구보고서 BSN17(4)-1890-6, 한국과학기술원, 1983
  5. Park YS, Choi JH, Son JE, Maeng KS, HWAHAK KONGHAK, 22(2), 107, 1984
  6. Choi JH, Park YS, Park YO, Park WH, Son JE, Korean J. Chem. Eng., 2(2), 111, 1985
  7. La Nauze RD, "Fluidization," ed. by Davidson, J.F, Clift, R. and Harrison, D., 2nd Ed., 631-674, 1985
  8. Lee JK, Hu CG, No JG, Shin YS, Chun HS, HWAHAK KONGHAK, 26(5), 517, 1988
  9. Chirone R, D'Amore M, Massimilla L, Mazza A, AIChE J., 31(5), 812, 1985
  10. Kono H, AIChE Symp. Ser., 77(205), 96, 1981
  11. Merrick D, Highley J, AIChE Symp. Ser., 70(137), 366, 1974
  12. Donsi G, Massimilla L, Miccio M, Combust. Flame, 41, 57, 1981
  13. Donsi G, Massimilla L, Miccio M, "The Elutriation of Solid Carbon from a Fluidized Bed Combustor," Riv. Combustion, CNR Naples Italy, Vol. 34, 336, 1980
  14. Arena U, AIChE J., 29(1), 40, 1983
  15. Arena U, Chirone R, D'Amore M, Massimilla L, Combust. Flame, 57, 123, 1984
  16. Arena U, D'Amore M, Massimilla L, Mea S, Miccio M, AIChE J., 32(5), 869, 1986
  17. 이희우, "저질탄의 유동층 연소기술 개발연구(II)," 연구보고서, 한국과학기술원, 1981
  18. Lee IC, Rhee HK, Park WH, Park WH, HWAHAK KONGHAK, 19(4), 259, 1981
  19. Chen TP, Sishtla CI, Punwani DV, Arastoopour H, "A Model for Attrition in Fluidized Beds," Proc. of the 4th Int. Conf. on Fluidization, 445, 1980
  20. Beer JM, Massimilla L, Sarofim AF, Inst. Energy Symp. Ser. (London) 4, IV, 5.1-IV, 5.10, 1980
  21. Gibbs BM, Beer JM, "A Pilot Plant Study of Fluidized Bed Coal Combustor," 1 Chem. E. Symp. Ser. No. 43, 23-1, 1975
  22. 박영철, "열천칭을 이용한 국내 무연탄 연소반응연구," 연구보고서, 과학기술처 KE-85(B)-4, 1985