Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.28, No.3, 292-302, 1990
생물반응기에서의 용존 산소농도 적응제어
Adaptive Control of Dissolved Oxygen Tension in Bio-reactor
산소전극의 동특성을 고령한 용존 산소농도 적응제어 알고리듬을 개발하였다. 적응 알고리듬을 생물반 응기의 시변성을 보상하기 위해 사용하였다. 널리 사용되고 있는 막형 산소전극은 용존 산소농도 제어를 어렵게 만드는 시간지연을 지니고 있으므로 이에 대한 보상을 위하여 산소전극의 동특성이 고려되었다. 용존 산소농도의 동특성은 두 개의 매개변수를 포함하는 쌍일차 모델을 사용하였다. 제어변수로는 유입공기량과 교반속도를 사용하였다. 해당 매개변수는 regularized constant trace방법으로 추정하였다. 제어 방식은 resetting 과정을 포함하는 one-step ahead 제어방식을 사용하였다. 새로 고안된 제어 알고리듬은 PID 제어나 산소전극의 특성을 고려하지 않은 적응제어 방법보다 우수한 성능을 나타내었다.
A new adaptive dissolved oxygen tension(DOT) control algorithm considering DO probe dynamics has been developed. The adaptive algorithm was used to compensate for time-varying properties of bioreactor dynamics. The probe dynamics are considered because the widely used membrane-type of oxygen probe has a time delay that makes it difficult to properly control the DOT. A bilinear model including two parameters was used for DOT dynamics in a bioreactor. Air flow rate and agitation speed were used as manipulating variables. The parameters were estimated using the regularized constant trace method. A one-step ahead control algorithm with resetting scheme was used to establish the control law. The new control algorithm performed better than the other control algorithms tested, PID control and adaptive control without a scheme for DO probe dynamics compensation.
[References]
  1. Thompson BG, Walter TL, J. Ferment. Technol., 64, 335, 1986
  2. Barford JP, J. Ferment. Technol., 63, 495, 1985
  3. Harrison DEF, Loveless JE, J. General Microbiol., 68, 35, 1971
  4. Dawson MW, Maddox IS, Boag IF, Brooks JD, Biotechnol. Bioeng., 32, 220, 1988
  5. Flynn DS, Lilly MD, Biotechnol. Bioeng., 9, 515, 1967
  6. Yano T, Mori H, Kobayashi T, Shimizu S, J. Ferment. Technol., 59, 295, 1981
  7. Clark TA, Biotechnol. Bioeng., 27, 1507, 1985
  8. McInnis BC, Lin CY, Butler PB, Proc. 5th IFAC Symposium, Identification and System Parameter Estimation, 789, 1979
  9. Astrom KJ, Wittenmark B, Automatica, 9, 195, 1973
  10. Ko KY, McInnis B, Goodwin GC, Automatica, 18, 727, 1982
  11. Gardello RJ, San KY, Biotechnol. Bioeng., 32, 519, 1988
  12. Koizumi J, Aiba S, Biotechnol. Bioeng., 26, 1131, 1984
  13. Werman WC, Wilke CR, Biotechnol. Bioeng., 15, 571, 1973
  14. Bailey JE, Ollis DF, "Biochemical Engineering Fundamentals," 2nd ed., McGraw-Hill, New York, 1986
  15. Astrom KJ, Wittenmark B, "Adaptive Control," Addision Wesley, 1989
  16. Goodwin GC, Sin KS, "Adaptive Filtering Prediction and Control," Prentice-Hall, Englewood Cliffs, NJ, 1984
  17. Lee JH, Yoo YJ, HWAHAK KONGHAK, 27(4), 366, 1989
  18. Yi GB, Hwang YB, Chang HN, Lee KS, Automatica, 25, 243, 1989
  19. Isermann R, "Digital Control Systems," Springer-Verlag, New York, 1981
  20. Astrom KJ, Wittenmark B, "Computer Controlled Systems," Prentice-Hall, Englewood Cliffs, NJ, 1984
  21. Stephanopoulos G, "Chemical Process Control," Prentice-Hall, Englewood Cliffs, NJ, 1984
  22. Seborg DE, Edgar TF, Shah SL, AIChE J., 32, 881, 1986
  23. Rohrs CE, Asyhans M, Valavani L, Stein G, Automatica, 20, 654, 1984