Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.28, No.2, 212-219, 1990
용질배제 특성곡선에 의한 한외여과 막의 세공크기 및 분포예측
Prediction of Pore Size and Distribution of Ultrafiltration Membrane by Solute Rejection Characteristic Curves
Polysulfone막(분획분자량;3,000)을 이용, 분자량이 다른 4종류 dextran용액의 한외여과 실험을 행하여 구한 용질배제를 특성곡선으로부터 확률분포의 개념으로 막 세공크기 및 분포를 예측하였다. 이 결과 용질배제 특성곡선은 대수 정규확률지상에서 직선관계를 나타내었으며, 세공크기 분포변수인 평균값(μ)과 표준편차(θ)는 조작조건 변화에 따른 농도분극 및 용질형태 변형의 영향을 받았다. 용질배제 특성고선으로부터 구한 polysulfone막의 평균 유효 세공반경은 14Å이엇으며, 세공반경 분포는 5-40Å범위이었다.
In this study polysulfone membrane(MWCO:3,000)was used and ultrafiltration experiment was car-ried out for 4 types of dextran solutions having different molecular weight to obtain the solute rejetion characteristic curve, from which the membrane pore size and the distribution could be predicted with the aid of the concept of prob-ability distribution. The result showed that the solute rejection characteristic curve had a linear relation on log-normal probability paper and the mean(μ) and the standard deviation(θ), which are the pore size distribution parameters, were in-fluenced by the concentration polarization and solute conformation according to the operating conditions. The apparent mean pore radius and the pore radius distribution obtained from the solute rejection characteristic curve were 14Å and in the range of 5-40Å respectively.
[References]
  1. Kassotis J, Shmidt J, Hodgins LT, Gregor HP, J. Membr. Sci., 22, 61, 1985
  2. Preuber HJ, Kolloid-z.u.z. Polym., 250, 133, 1972
  3. Kesting RE, "Synthetic Polymeric Membranes," 2nd, Ed., John Wiley & Soms, New York, NY, 281, 1985
  4. Velicangil O, Howell JA, J. Phys. Chem., 84(23), 2991, 1980
  5. Pappenheimer JR, Rankin EM, Borrero LM, Am. J. Physiol., 167, 13, 1951
  6. Tragardh G, Desalination, 53, 25, 1985
  7. Smolders CA, Vugteveen E, Material Science of Synthetic Membranes, Lloyd, D.R., Ed. ACS Symp. Series, No. 269, Washington D.C., 339, 1985
  8. Chan K, Matsumura T, Sourirajan S, Ind. Eng. Chem. Prod. Res. Dev., 21, 605, 1982
  9. Du Bois R, Stoupel E, Biophys. J., 16, 1427, 1976
  10. Goldsmith RL, Ind. Eng. Chem. Fundam., 10(1), 113, 1971
  11. Michaels AS, Sep. Sci. Technol., 15(6), 1305, 1980
  12. Schwarz HH, Bossin E, Fanter D, J. Membr. Sci., 12, 101, 1982
  13. Kim WS, Youm KH, Lee HW, Lee CS, HWAHAK KONGHAK, 25(6), 593, 1987
  14. Frigon RP, Leypoidt JK, Uyeji S, Henderson LW, Anal. Chem., 55, 1349, 1983
  15. Vilker VL, Colton CK, Smith KA, J. Colloid Interface Sci., 79(2), 548, 1981
  16. Youm KH, Ph.D. Dissertation, Yonsei Univ., Seoul, Korea, 1988
  17. Schweitzer PA, "Handbook of Separation Techniques for Chemical Engineers," McGraw-Hill, New York, NY, 1973
  18. Nakao SI, Kimura S, Synthetic Membranes, Vol. II, Turbak, A.F., Ed., ACS Symp. Series, No. 154, Washington, D.C., 119, 1981