Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.28, No.2, 152-162, 1990
자성 초미립자의 응집에 관한 연구
Study on Aggregation of Ferromagnetic Ultrafine Particles
자성 초미립자로 이루어진 응집체의 형상이 응집기구에 따라 어떤 영향을 받는가를 실험과 이론을 통하여 살피었다. 실험에서 입자가 클수록, 물질 고유의 포화자화도가 크면 클수록 만들어진 응집체는 사슬모양을 이루었으며 이 사슬은 외부 자장하에서 거의 직선에 가까운 모습을 보였다. 또 사슬을 이루는 기본입자들의 크기는 극히 좁은 분포를 가지고 있음이 관찰되었다. 아울럴 사슬형이든 random한 것이든 어떤 형태의 응집체에 대해서도 그 형상을 fractal의 개념을 써서 수학적으로 표시할 수 있었다. 이론적으로는 무향성의 van der Waals힘, hydrodynamic 힘들과 방향성의 자기력을 각각 고려하여 그것이 브라운 응집에 기여하는 유효인자값을 계산하여 비교 검토하였다. 그 결과 사슬을 만드는 경우 다른 힘을 자기력이 압도하여 일어남을 확인하였고 더불어 외부 자장하의 선형화 및 기본입자의 분포에 과한 위의 실험적 사실도 충분히 뒷받침할 수 있었다.
The shapes of aggregates of ferromagnetic ultrafine particles have been studied experimentally and theoretically. Experiment shows that the paricles form more chain-like aggregates when both the size and the saturation magnetization of the particles increase as far as their sizes remain within single domain. The chains become straightened under an external magnetic field. The primary particles in a single chain seem to have very narrow size distributions. The various shapes of the aggregates could be described mathematically by the concept of fractal’. The values of the efficiency factor which modifies the extent of Brownian coagulation were calculated from a model equation considering isotropic forces(van der Waals and hydrodynamic forces)and anisotropic force(magnetic force), respectively. It has turned out that the latter force dominates the formers in case of chain-forming particles and the model well supports the experimental observations on the chain linearization under the field and the monodispersity of the primary particles, described above.
[References]
  1. Witten TA, Sander LM, Rev. Lett., 47, 1400, 1981
  2. Meakin P, Waaerman ZR, Phys. Lett., 103A, 337, 1984
  3. Popplewell J, Davies P, Bradbury A, Chantrell RW, IEEE Trans. Magn., MAG22, 1128, 1986
  4. Kimoto K, Kamiya Y, Nonoyama M, Jpn. J. Appl. Phys., 2, 702, 1963
  5. Kim SG, Brock JR, J. Appl. Phys., 60, 5, 1986
  6. Kim SG, Brock JR, J. Colloid Interface Sci., 116, 431, 1987
  7. Friendlander SK, "Smoke Dust and Haze," John-Wiley and Sons, New York, 1977
  8. Zebel G, "Coagulation of Aerosols," in Aerosol Science, Davies, C.N. Ed., Academic Press, New York, 1966
  9. Valious IA, List EJ, Adv. Colloid Interface Sci., 20, 1, 1984
  10. Spielman LA, J. Colloid Interface Sci., 33, 502, 1970
  11. Zebel G, Staub, 19, 381, 1959
  12. Overbeek J, Th G, Powder Technol., 37, 195, 1984
  13. Fuchs A, "Mechanics of Aerosol," English Ed., Pergamon Press, Oxford, 1964
  14. Scholten PC, Tjaden DLA, J. Colloid Interface Sci., 73, 254, 1980
  15. Jordan PC, Mol. Phys., 38, 769, 1979
  16. Lubensky TC, Pincus PA, Phys. Today, 44, 1984