Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.39, No.5, 656-660, 2001
광화학반응에의 POF 활용
Application of Plastic Optical Fiber in Photocatalysis
본 연구에서는 조명 및 장식용으로 주로 사용되는 core 재질이 폴리머인 플라스틱 광섬유(plastic optical fiber, POF)를 광화확 반응에의 빛 전달매체로 사용하는 방법을 제시하였다. 이렇게 하기 위해서 외피(clad)만을 용이하게 제거하는 간편한 방법을 제시하고, 시스템에 다발로 적용이 되었을 때 가장 영향이 큰 변수를 찾아 이에 대한 관계를 정립하였다. TiO2(P25, Degussa)가 코팅된 POF 반응기를 이용하여 C2HCl3(trichloroethylene, TCE)와 에탄올의 기상 광촉매 분해반응을 검토하였다. Clad층의 제거를 위하여 13종의 용매를 사용하여 용해도 파라미터나 작용기 등을 통하여 가능성을 확인해 보았으나 아세톤에 3분간 용해할 경우가 가장 적정하다고 SEM을 통해 판단되었다. TCE의 광촉매분해 반응은 POF에 다중 코팅된 TiO2의 두께에 크게 영향을 받았고, POF의 직경의 변화에 있어서는 직경이 증가할수록 반응이 증가하였으나, 상대적으로 광섬유 내의 반사횟수의 감소로 인해 반응성 증가가 줄어드는 결과를 확인하였다. 광섬유의 직경 및 길이의 동시변화를 통하여 반응 표면적이 같으면 반응 정도가 일치함을 확인하였고, 에탄올 분해의 경우 in-situ FTIR 측정을 통하여 CO2로 완전히 전환됨을 확인하였다.
In this study, the use of plastic optical fiber(POF) was presented as a light guide in photocatalysis. To do so a simple method to remove the clad of POF was established and the most effective parameters on photocatalysis were investigated when used in a form of bundled array. Photocatalytic degradation of trichloroethylene(C2HCl3, TCE) and ethanol in the gasphase was also performed by using TiO2-coated plastic optical fiber reactor. Among 13 solvents with different solubility parameters and working groups, acetone was used to remove clad layer chemically, resulting in that optimized time of POF in acetone was selected 3 min to remove the clad layer completely. The photocatalytic activities of TiO2-coated optical fiber reactor system was dependent on the coating thickness, diameter and total clad-stripped surface area of POF. In ethanol degradation, in-situ FTIR measurement resulted in complete mineralization into CO2.
[References]
  1. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69, 1995
  2. Ollis DF, "Photocatalytic Purification and Treatment of Water and Air," Elsevier, 1993
  3. Pellizzetti E, "Homogeneous and Heterogeneous Photocatalysis," NATO ASI Series 174, Plenum, New York, 1986
  4. Utsuna SK, Atmospheric Environment, 27, 599, 1993
  5. Nimlos MR, Environ. Sci. Technol., 27, 732, 1993
  6. Kim JS, Chemosphere, 36, 483, 1998
  7. Yoon JK, HWAHAK KONGHAK, 38(2), 288, 2000
  8. Moon SC, Catal. Today, 58(2-3), 125, 2000
  9. Ollis DF, AIChE J., 23, 415, 1977
  10. Hoffmann MR, Environ. Sci. Technol., 29, 2974, 1995
  11. Hoffmann MR, Environ. Sci. Technol., 30, 2806, 1996
  12. Hoffmann MR, J. Photochem. Photobiol. A-Chem., 108, 221, 1997
  13. Shin BG, Optics and Technology, Optical Society of Korea, 25, July, 2000
  14. Jeong H, HWAHAK KONGHAK, 39(3), 352, 2001
  15. Sperling LH, "Introduction to Physical Polymer Science," Wiley, New York, 1986
  16. Granqvist CG, "Materials Science for Solar Energy Conversion System," Pergamon Press, 1991
  17. Kim JS, Chemosphere, 38, 2969, 1999