Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.39, No.4, 470-476, 2001
고령토에 의한 증기상 중금속의 고온 제거에 관한 연구 - 납 흡착 반응 특성
Study on High-Temperature Capture of Vapor-Phase Heavy Metal by Kaolin - Lead Sorption Reaction Characteristics
소결시킨 kaolin 흡착제 고정층에서의 기체상 납 흡착반응을 973-1, 173 K의 온도범위에서 속도론적으로 고찰하였다. 흡착반응속도에 대한 반응온도 및 기체상 반응물 농도의 영향은 속도론적 모델을 통한 실험자료 분석으로 평가되었다. 납-흡착제 반응에 대한 보다 자세한 정보는 반응 전·후 흡착제에 대한 XRD(X-ray diffraction) 분석 및 현미경분석으로 얻어졌다. Kaolin 광물의 소결 생성물인 metakaoinite와 기체상 납과의 반응은 안정적인 금속-광물 화합물(PbAl2Si2O8)을 생성하였다. 반응온도의 증가는 납 제거속도를 증가시켰지만 최대 흡착량에는 영향을 주지 못했다. 납 농도에 대한 반응차수, m은 1.67로 결정되었다. Arrhenius 식에 의해 구해진 활성화에너지 E(a)는 10.16 kcal/mol이었다.
This study investigated the kinetics of the sorption reaction for gaseous lead capture in the packed bed of cal-cined kaolin at 973-1,173 K. The effects of bed temperature and gaseous reactant concentration on the sorption reaction rate were observed by the analysis of experimental data with a developed kinetic model. Detailed information on the lead-sorbent reaction were obtained by the XRD(X-ray diffraction) pattern analysis and the microscopic analysis of pre- and post-sorption sorbent samples. The reaction between metakaolinite, which is the calcination product of kaolin minerals, and the gas-phase lead generated stable metal-mineral complexes(PbAl2Si2O8). An increase in bed temperature resulted in an increase of captur-ing rate, but it had no effect on maximum uptake. The order of sorption reaction with respect to the lead concentration, m, was determined to be 1.67. The activation energy, E a , was estimated as 10.16 kcal/mol, according to the Arrhenius relationship.
[References]
  1. Barton RG, Clark WD, Seeker WR, Combust. Sci. Technol., 74, 327, 1990
  2. Edwin AK, Howell HH, J. Air Waste Manage. Assoc., 40, 1220, 1990
  3. Yang HC, Kim JH, Seo YC, Kang Y, Korean J. Chem. Eng., 13(3), 261, 1996
  4. Yang HC, Kim JH, Oh WJ, Park HS, Seo YC, Environ. Eng. Sci., 15, 299, 1998
  5. Yang HC, Seo YC, Kim JH, Park HH, Kang Y, Korean J. Chem. Eng., 11(4), 232, 1994
  6. Lee CC, JAPCA, 38, 941, 1988
  7. Linak WP, Wendt JOL, Prog. Energy Combust. Sci., 19, 145, 1993
  8. Perdek J, Seeker WR, Superfund Innovative Technology Evaluation Program, 7, 332, 1994
  9. Davison RL, Natusch DRS, Wallace JR, Environ. Sci. Technol., 8, 1107, 1974
  10. Ghosh-Dastidar A, Mahuli S, Agnihotri R, Fan LS, Environ. Sci. Technol., 30, 447, 1996
  11. Ho TC, Chen C, Hopper JR, Oberacker DA, Combust. Sci. Technol., 85, 101, 1992
  12. Lee HT, Ho TC, Hsiao CC, Bostick WD, Proc. of 1996 International Conf. on IT3, Savannah, Georgia, USA, 561, 1995
  13. Mahuli S, Agnihotri R, Chauk S, Ghosh-Dastidar A, Fan LS, Environ. Sci. Technol., 31, 3226, 1997
  14. Scotto MA, Peterson TW, Wendt JOL, 24th International Symposium on Combustion, The Combustion Institute, Pittsburgh, 1109, 1992
  15. Uberoi M, Shadman F, AIChE J., 36, 306, 1990
  16. Wouterlood HJ, Bowling KM, Am. Chem. Soc., 13, 93, 1979
  17. Eddings EG, Lighty JS, Kozinski JA, Environ. Sci. Technol., 1791, 1994
  18. Yang HC, Yun JS, Kang MJ, Kim JH, Kang Y, Korean J. Chem. Eng., 16(5), 646, 1999
  19. Sherwood TK, Pigford RL, Wilke CR, "Mass Transfer," McGraw-Hill, Chemical Engineering Series, 319, 1975
  20. Park HC, Moon H, Korean J. Chem. Eng., 1(2), 165, 1984
  21. Perry RH, Green D, "Perry's Chemical Engineers Handbook," McGraw-Hill, INC., 6, 3/285, 1984
  22. Satterfield CN, "Heterogeneous Catalysis in Industrial Practice," McGraw-Hill, INC., 2, 471, 1993