Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.39, No.3, 379-384, 2001
화산석을 담체로 한 Biofilter에서 황화수소 제거 특성
Removal Characteristics of Hydrogen Sulfide in the Biofilter Packed with Volcanic Rock (Scoria)
생물학적 탈취법은 에너지절약과 아울러 유지관리가 용이하여 기존의 물리화학적 처리법에 대한 대체 방법으로 주목을 끌고 있다. 화산석과 Bacillus sp.가 충전된 바이오필터를 이용하여 H2S 제거에 대한 유입농도와 공탑접촉시간(EBCT, Empty Bed Contact Time)의 영향을 평가하고 최대제거용량 산정을 위한 다양한 실험을 수행하였다. 화산석 입자 크기가 5.6-10 mm인 경우에 0.25 m/s의 유속에 대해 13.4 mmH2O/m의 압력손실이 측정되었다. 화산석과 Bacillus sp.를 사용한 바이오필터는 유입농도 250 ppmv에서 EBCT 8.2-60 sec의 범위에서 99% 이상의 안정된 제거효율을 유지하였다. 또한 체류시간을 5.5 sec로 감소시킨 결과 H2S 제거효율은 약 10% 감소하였고 이때의 H2S 제거용량은 254 g-H2S/m(3)/hr로 산정되었다. 일정한 유입유량 15.2 L/min(선속도는 0.04 m/sec)의 조건에서 유입농도가 30-1,100 ppmv의 경우 H2S 제거효율은 99.9% 이상이었다.
Biological deordorization receives attracting attention as an alternative method to physical and chemical treatment, mainly because of its energy-saving and easy maintenance features. A biofilter packed with scoria, and inoculated with Bacillus sp. as H2S oxidizer was used to remove hydrogen sulfide in the air stream. Various tests have been conducted to evaluate the effect of H2S inlet concentration and EBCT (Empty Bed Contact Time) on H2S elimination, and to determine the maximum elimination capacity. The pressure drop in the biofilter packed with particles of size range from 5.6 to 10 mm was 13.4 mmH2O/m at a representative gas velocity of 0.25 m/s. Biofilter showed the stable removal efficiencies of over 99% under the EBCT range from 8.2 to 60 sec at the 250 ppmv of H2S inlet concentration. When the retention time was reduced to 5.5 sec, the H2S removal efficiency decreased by about 10 percent and the H2S elimination capacity was 254 g-H2S/m(3)/hr. The removal efficiencies of over 99.9% were observed in the range of inlet H2S concentration from 30 to 1,100 ppmv at a constant gas flow rate of 15.2 L/min (linear velocity, 0.04 m/sec).
[References]
  1. Yang Y, Allen ER, J. Air Waste Mange. Assoc., 44, 863, 1994
  2. Park SJ, Kim DS, J. KSWES, 16(1), 36, 1999
  3. Van Lith C, Leson G, Michelsen R, J. Air Waste Mange. Assoc., 47, 37, 1997
  4. Furusawa N, Togashi I, Hirai M, Shoda M, Kubota H, J. Ferment. Technol., 62, 589, 1984
  5. Togashi I, Suzuki M, Hirai M, Shoda M, Kubota H, J. Ferment. Technol., 64, 425, 1986
  6. Cha JM, Park Y, Lee IW, Korean J. Biotechnol. Bioeng., 9, 287, 1994
  7. Ottengraf SPP, Biotechnology, 8, 425, 1986
  8. Zarook S, Baltzis BC, Oh YS, Bartha R, Biotechnol. Bioeng., 41, 512, 1993
  9. Warren JS, Raymond CL, J. Environ. Eng., 123(6), 538, 1997
  10. Lee MG, Kang JH, Kang YJ, HWAHAK KONGHAK, 30(6), 731, 1992
  11. Lee MG, Suh KH, J. Korean Environ. Sci. Soc., 5(2), 195, 1996
  12. Bin JI, Lee BH, Kim JG, Choi H, Lee MG, Theor. Appl. Chem. Eng., 6, 4073, 2000
  13. Park HG, Lee HG, Ju CS, Kam SK, Lee MG, Theor. Appl. Chem. Eng., 6, 4069, 2000
  14. Todd SW, Joseph SD, "Biofiltration," John Wiley and Sons, Inc., 653, 1998
  15. Chung YC, Huang C, Li CF, J. Environ. Sci. Health, A32(5), 1435, 1997
  16. Namkoong W, Park JS, Lee NS, J. KOWREC, 8(1), 60, 2000
  17. Cho KS, Kuniyoshi I, Hirai M, Shoda M, Biotechnol. Lett., 13, 923, 1991
  18. Chung YC, Huang C, Tseng CP, J. Biotechnol., 52, 31, 1996