Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.39, No.3, 368-378, 2001
유동층 생물막 반응기에서의 폐수 탈질화 모델
Modeling the Denitrification of Wastewater in a Fluidized Bed Biofilm Reactor
모래와 활성탄입자를 담체로 사용한 유동층 생물막 반응기에서의 폐수 탈질화에 대한 모델을 제시하였다. Boaventura와 Rodrigues에 의해 제안된 두 개의 순차적 영차 반응에 기초한 생물막 모델을 수정하였다. 반응기 모델은 질산과 아질산의 액상-생물입자 간의 물질전달도 함께 고려하였다. 반응기 액상의 혼합도 영향은 액상 플러그 흐름 및 완전혼합을 가정하여 고찰하였다. 모래담체 생물입자에 형성되는 얇은 생물막은 질산과 아질산에 의해 완전히 침투되며, 활성탄입자 담체에 형성되는 두꺼운 생물막은 질산 또는 아질산에 의해 부분 침투되는 것으로 나타났다. 질산 및 아질산의 제거속도는 완전침투의 경우 생물막 균체량에 의해, 부분침투의 경우 생물입자 표면적에 의해 각각 결정된다. 또한 생물막 부분침투의 경우, 생물막 내 물질확산, 액상과 생물입자 간의 물질전달 및 반응기 액상 혼합도가 반응기 단위부피 당 질산성질소 및 아질산성질소의 제거속도를 결정하는데 있어 중요한 역할을 한다.
A reactor model was developed for the wastewater denitrification in the fluidized bed biofilm reactors with sand and activated carbon particles as support media. The biofilm model proposed by Boaventura and Rodrigues was modified based on the reaction scheme of two consecutive zero-order reactions. The reactor model also includes mass transport of nitrate and nitrite through the liquid film around bioparticles. The effects of liquid-phase mixing in the reactors were also taken account for by assuming the plug flow and the perfect mixing. Thin biofilms formed on the sand support media were fully penetrated by both nitrate and nitrite. On the other hand, the partial penetrations of both species were predicted to occur in thick biofilms on the activated carbon support particles. The removal rates of nitrate and nitrite in the case of full penetration were determined by the biomass quantity of the biofilm, while the surface area of bioparticles determined those in the partial penetration. In the case of partial penetration, the effective diffusivity in the biofilm, the liquid-bioparticle mass transfer and the liquid-phase mixing in the reactor play an important role in determining the volumetric removal rate of nitrate and nitrite.
[References]
  1. Painter HA, Water Res., 4, 393, 1970
  2. Shieh WK, Mulcahy L, LaMotta EJ, Enzyme Microb. Technol., 4, 269, 1982
  3. Kim DS, Song SK, Chem. Ing. Tech., 13, 35, 1995
  4. Jeris JS, Owens RW, Hickey R, Flood F, J. WPCF, 49, 816, 1977
  5. Walker JF, Hancher CW, Genung RK, Patton BD, Kowalchuk M, Biotechnol. Bioeng., 11, 416, 1981
  6. Shin SH, Suh IS, Chang IY, Theor. Appl. Chem. Eng., 3, 1049, 1997
  7. Boaventura RA, Rodrigues AE, Chem. Eng. Sci., 43, 2715, 1988
  8. Coelhoso I, Boaventura R, Rodrigues A, Biotechnol. Bioeng., 40, 625, 1992
  9. Atkinson LV, Harley PJ, Hudson JD, "Numerical Methods with Fortran 77: a Practical Introduction," Addison-Wesley, Woking-ham, 1989
  10. Hermanowicz SW, Ganczarczyk JJ, Biotechnol. Bioeng., 25, 1321, 1983
  11. Tsezos M, Benedek A, Water Res., 14, 689, 1980
  12. Ngian KF, Martin WR, Biotechnol. Bioeng., 22, 1843, 1980
  13. Kikuchi KI, Sugawara T, Ohashi H, J. Chem. Eng. Jpn., 16, 426, 1983
  14. Monbouquette HG, Sayles GD, Ollis DF, Biotechnol. Bioeng., 35, 609, 1990
  15. Libicki SB, Salmon PM, Robertson CR, Biotechnol. Bioeng., 32, 68, 1988
  16. Fan LS, Leyva-Ramos R, Wisecarver KD, Zehner BJ, Biotechnol. Bioeng., 35, 279, 1990
  17. Kim DS, An KH, Suh MG, Park TJ, Song SK, HWAHAK KONGHAK, 29(4), 448, 1991