Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.39, No.3, 352-356, 2001
TiO2가 코팅된 광섬유 광화학반응기를 이용한 C2Cl4의 기상중 광촉매분해
Photocatalytic Degradation of Perchloroethylene by TiO2 Coated on Optical Fiber Reactor in the Gas Phase
TiO2(Degussa P-25)가 코팅된 optical fiber reactor(OFR) system을 이용하여 C2Cl4(Perchloroethylene, PCE)의 기상중 광촉매분해 반응을 검토하였다. PCE의 광촉매분해 반응은 optical fiber에 코팅된 TiO2 박막의 두께에 크게 영향을 받았다. 코팅에 사용된 TiO2 슬러리의 농도를 5 wt% 조절하여 TiO2 박막의 두께를 약 600 nm로 하였을 때 광촉매활성이 가장 높았다. 이것은 광촉매가 코팅된 광섬유시스템에서 빛의 이용을 효율적으로 할 수 있는 TiO2의 두께가 존재한다는 것을 의미한다. 빛의 세기 변화(300 W, 600 W, 900 W)에 따른 PCE의 분해효율은 조사된 영역에서 빛의 세기의 증가에 대하여 선형적으로 증가하였다. 기상중 PCE의 광촉매분해에 있어서의 중간생성물은 CCl4, CCl3COCl(Trichloroacethyl chloride, TCAC), COCl2로 나타났으며 이 때의 반응기구에 대하여 검토하였다.
Photocatalytic degradation of perchloroethylene(C2Cl4, PCE) in the gas-phase was investigated by using TiO2-coated optical fiber. The photocatalytic activities of TiO2 in the optical fiber reactor system depended on the thicknesses of TiO2 films coated on optical fiber. The highest photocatalytic activity was obtained from the 5 wt% TiO2 slurry and the thickness of the TiO2 films prepared by this concentration was ca. 600 nm. This thickness could be related with the propagation of the light from the core of the optical fiber to TiO2 films. The photocatalytic degradation rates of PCE increased linearly with the increase of light intensity within the investigated range (300 W, 600 W, 900 W). Reaction mechanism of PCE in the gas-phase photocatalytic reaction was also postulated from the result that CCl4 , CCl3COCl (Trichloroacethyl chloride) and COCl2 were found as intermediates.
[References]
  1. Ollis DF, Hsiao CY, Budiman L, Lee CL, J. Catal., 88, 89, 1984
  2. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69, 1995
  3. Al-Ekabi H, Serpone N, J. Phys. Chem., 92, 5726, 1988
  4. Ha HY, Anderson MA, HWAHAK KONGHAK, 34(3), 356, 1996
  5. Yoon JK, Yoon WS, Joo HK, Jeon MS, Lee TK, HWAHAK KONGHAK, 38(2), 288, 2000
  6. Ollis DF, Marinangeli RE, AIChE J., 23, 415, 1977
  7. Ollis DF, Marinangeli RE, AIChE J., 26, 1000, 1980
  8. Peill NJ, Hoffmann MR, Environ. Sci. Technol., 29, 2974, 1995
  9. Hofstadler K, Bauer R, Novalic S, Heisier G, Environ. Sci. Technol., 28, 670, 1994
  10. Peill NJ, Hoffmann MR, Environ. Sci. Technol., 30, 2806, 1996
  11. Peill NJ, Bourne L, Hoffmann MR, J. Photochem. Photobiol. A-Chem., 108, 221, 1997
  12. Peill NJ, Hoffmann MR, Environ. Sci. Technol., 32, 398, 1998
  13. Kim JS, Itoh K, Murabayashi M, Chemosphere, 36, 483, 1998
  14. d'Hennezel O, Ollis DF, Int. Cong. Catal., 101, 435, 1996
  15. Nimlos MR, Jacoby WA, Blake DM, Milne TA, Environ. Sci. Technol., 27, 732, 1993
  16. Ibusuki T, Takeuchi K, Atmospheric Environ., 20, 1711, 1986
  17. Kim JS, Itoh K, Murabayashi M, Denki Kagaku, 64, 1200, 1996
  18. Dibble LA, Raupp GB, Catal. Lett., 4, 345, 1990
  19. Gelling PJ, Bouwmeester HJM, Catal. Today, 12, 1, 1992