Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.39, No.3, 346-351, 2001
선회 및 기하학적 형상 변화에 따른 중잔유 가스화 반응 특성 연구
A Study on the Characteristics of the Heavy Residual Oil Gasification with Varying Swirl and Geometry
본 연구에서는 원유 정제후 남는 고유황 함유 물질인 중잔유를 가지고 전산해석방법론을 적용하여 고온/고압 가스화기내에서의 가스화 반응 특성을 파악하고자 하였다. 특히, 가스화기 설계의 주요 인자인 이차주입노즐에서의 선회 강도(선회수)와 원통형 반응로의 형상(L/D)을 해석 변수로 선정하여 반응 유동장의 패턴 변화를 고찰해 봄으로써 중잔유 가스화기의 적절한 설계 및 운전 조건의 설정에 중요한 역할을 하는 변수들의 영향을 파악하고자 하였다. 전산해석 결과, 선회수가 커질수록 화염안정화에 도움을 주는 가스화기 중심축 재순환영역의 크기가 증가하고, 연로와 산화제의 혼합을 향상시켜 가스화기내 유동을 균일화시킴으로써 전체적인 반응 완료 시간이 빨라지는 경향을 확인할 수 있었다. 그리고 L/D 비가 작을수록 반응로내 연료의 반응 완료 시간이 길어지고, 선회에 의한 영향력이 상대적으로 약화됨을 확인할 수 있었다. 따라서, 중잔유 가스화기 설계시 화염안정화 및 산화제와 연료의 적절한 혼합을 유지하고 내화재 손상을 최소화하기 위해서는 L/D 비와 선회 강도의 조합을 최적화하는 것이 필수적이라고 판단되었다.
Numerical study of the turbulent reacting flow in a high-temperature and high-pressure gasifier has been carried out to analyze the characteristics of gasification reaction of heavy residual oil, which has high sulfur content. In this study, the effect of swirl strength of the secondary nozzle and reactor geometry(L/D), known to be the crucial design parameters of gas-fier, has been extensively studied. Especially, we intended to find the effect of operating and design parameters by observing the reacting flow pattern as the key parameters have changed. It is shown that there is progressive increase in the length of central toroidal recirculation zone which plays an important role in flame stabilization and the increase in the reactivity of heavy residual oil as the swirl number increases. In addition, required time for the complete reaction increases and the swirl effect is relatively weakened as the L/D ratio decreases. Most of all, it is found that the optimal combination of L/D ratio and swirl strength is essential to maintain the flame stabilization and efficient mixing ratio of fuel and oxidizer, and to minimize the damage of wall refractory.
[References]
  1. Liebner W, Hauser N, "Optimizing/Costing Study for a 500 MW IGCC Power Plant Based on the Shell Gasification Process," EPRI, Gasification Technologies Conference, 1996
  2. Lee SJ, Yun Y, Yu JY, Seo IJ, HWAHAK KONGHAK, 37(5), 775, 1999
  3. Bird RB, Stewart WE, Lightfoot EN, "Transport Phenomena," John Wildy and Sons, New York, 1960
  4. Patankar SV, "Numerical Heat Transfer and Fluid Flow," Hemisphere publishing, Washington, 1980
  5. Smoot LD, Smith PJ, "Coal Combustion and Gasification, Plenum Press," New York, 1985
  6. Na H, Lee J, Yun Y, Energy Eng. J., 8(2), 309, 1999
  7. Modak SA, Alexander AJ, J. Fluid Mech., 55(Part 2), 193, 1972
  8. Gupta AK, Lilley DG, Syred N, "Swirl Flow," Abacus Press, 1984
  9. Collodi G, Allevi C, Jones RM, Racine RF, "The SARLUX IGCC Project," EPRI Conference, 1997
  10. Texaco Gasification Process for Gaseous or Liquid Feedstocks, 1993