Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.39, No.3, 333-339, 2001
순환공정의 수평관에서 농후상 기류수송의 경계유속
Critical Velocity for the Dense-Conveying in a Horizontal Pipe of a Circulation Process
고체순환장치의 수평관에서 차압계를 이용하여 농후상영역과 plug 흐름사이의 경계유속을 측정하였다. 수평관은 직경 0.034 m, 길이 1.8 m로 Plexiglas로 만들어졌다. 본 실험에서는 FCC 촉매, 아연계탈황제, polyethylene 입자를 사용하였다. 본 연구에서는 경계유속을 결정하기 위해 수평관에서 차압, 표준편차와 고체수송속도를 측정하였다. 실험결과 경계유속은 고체수송속도가 증가할수록 증가하였으나 압력범위 1.0-2.0 atm에서는 별다른 변화가 없었다. 입자의 밀도, 직경, 고체수송속도를 사용하여 경계유속을 예측할 수 있는 상관식을 제시하였다. 가압순환공정에 있어 경계유속 이하의 유속에서 발생하는 plug flow는 가압시스템의 수평관 전후의 압력균형에 불안정한 요소로 작용하였다.
Critical velocities were measured by differential pressure transducers in a solid circulation experimental apparatus which was a 1.8 m in length, 0.034 m in diameter of Plexiglas horizontal pipe. Three kinds of particles of FCC catalyst, zinc titanate and polyethylene were used. Pressure drop, standard deviation of pressure drop fluctuations and solid conveying rate were measured to determine the critical velocity. Critical velocity increased with increasing solids conveying rate, however, there was little effect of the pressure on the critical velocity in the range from 1.0 to 2.0 atm. The critical velocity was correlated in terms of particle density, diameter and solid conveying rate. Unstable Pressure balance was occurred at front section and at rear section of a horizontal pipe in a pressurized circulation system when it was disturbed by plugs at a velocity less than U(cr).
[References]
  1. Konrad K, Powder Technol., 49, 1, 1986
  2. Molerus O, Powder Technol., 88(3), 309, 1996
  3. Kunii D, Levenspiel O, "Fluidization Engineering," 2nd ed., Butterworth-Heinemann, Boston, 1991
  4. Molerus O, Burschka A, Chem. Eng. Process., 34(3), 173, 1995
  5. Hong J, Tomita Y, Int. J. Multiphase Flow, 4, 649, 1995
  6. Muschelknautz E, Wojahn W, Fordern(ed.) "Ullmanns Encyklopadie der technischen Chemie," Chemie, Weinheim, 3, 131, 1973
  7. Wirth KE, Ger. Chem. Engng., 6, 45, 1983
  8. Wirth KE, Molerus O, N.P. Cheremisinoff (Ed.) "Encyclopedia of Fluid Mechanics, Solids and Gas-Solids Flow," Gulf, Houston, TX, vol. 4, chap. 11, 1986
  9. Albright CW, Holden JH, Simons HP, Schmidt LD, Ind. Eng. Chem., 43, 1837, 1951
  10. Wen CY, Simons HP, AIChE J., 5, 263, 1959
  11. Lippert A, Chemie-Ing. Technol., 38, 350, 1966
  12. P.E.C. (Physics Engineering Chemistry Corp.) Report, "Characteristics of Confined Dense-Phase Flow of Granular Solids Driven by Compressed Air," U.S. Report No. A.D.642845, 1966
  13. Konrad K, Harrison D, Nedderman RM, Davidson JF, Proc. Pneumotransport, 5, 225, 1980
  14. Chari SS, 63rd Annual Meeting of AIChE, AIChE Symp. Ser., 67(116), 17, 1971
  15. Rhodes M, "Introduction to Particle Technology," John Wiley & Sons Ltd., Chichester, 139, 1998
  16. Wen CY, Galli AF, J.F. Davidson and D. Harrison (Eds.) "Fluidization," Academic Press, London and New York, 675, 1971
  17. Geldart D, Powder Technol., 7, 285, 1973
  18. Hong J, Shen Y, Tomita Y, Powder Technol., 84(3), 213, 1995
  19. Pan R, Powder Technol., 104(2), 157, 1999
  20. Jiang P, Bi H, Liang SC, Fan LS, Fluid Mechanics Transport Phenomena, 40, 193, 1994
  21. Li H, Legros R, Brereton CMH, Grace JR, Chaouki J, Powder Technol., 60, 121, 1990
  22. Bi HT, Jiang PJ, Jean RH, Fan LS, Chem. Eng. Sci., 47, 3113, 1992
  23. Cabrejos FJ, Klinzing GE, Powder Technol., 79(2), 173, 1994
  24. Savage SB, Pfeffer R, Zhao ZM, Powder Technol., 88(3), 323, 1996
  25. Han GY, Lee GS, Kim SD, Korean J. Chem. Eng., 2(2), 141, 1985
  26. Lee JS, Kim SD, HWAHAK KONGHAK, 20(3), 207, 1982
  27. Lee JK, Park D, HWAHAK KONGHAK, 25(4), 336, 1987