Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.39, No.2, 221-227, 2001
메탄가스 저장용 활성탄 성형체의 제조 및 흡착특성
Preparation and Adsorption Characteristics of Monolithic Form of Activated Carbon for Methane Gas Storage
왕겨의 수산화칼륨 활성화에 의해 높은 비표면적과 세공용적을 갖는 활성탄을 제조하고, 단위체적당 충진밀도를 증가시키기 위하여 성형체로 제조하여 천연가스 저장용 흡착제로서의 가능성을 조사해 보았다. 단위체적당 흡착되는 메탄가스의 에너지 밀도가 큰 성형체를 제조하기 위하여 실험 변수로 선정한 열처리 조건, 바인더의 함량, 바인더의 종류가 성형체의 세공구조, 충진밀도 및 메탄 흡착량에 미치는 영향을 조사하였다. 페놀과 수용성 고분자 혼합물을 바인더로 사용하여 제조한 성형체의 비표면적은 열처리 전에는 173-575 ㎡/ml에서 열처리에 의해 451-678 ㎡/ml로 증가하였다. 수용성 고분자 혼합물을 바인더로 사용해서 제조된 성형체는 페놀과 수용성 고분자로 제조한 성형체에 비하여 충진밀도는 유사하나, 비표면적은 2배 정도 높게 얻어졌다. 특히 PVP와 PVA를 혼합하여 성형체를 제조하였을 때, 충진밀도는 0.47 g/ml, 비표면적은 2,150 ㎡/g (1,011 ㎡/ml)의 높은 값을 얻었고, 흡착된 메탄가스의 단위체적당 에너지 밀도가 124 v/v로 우수한 메탄가스 저장용 흡착제를 제조할 수 있었다.
High surface area and high pore volume activated carbon was prepared by KOH activation of rice hull and a series of monolithic forms of the activated carbon were prepared to increase packing density and energy density of adsorbed methane gas per volume for natural gas storage. The effect of process variables such as heat-treatment condition, binder content, and binder type on the pore structure, packing density and methane adsorption was investigated. The surface areas of the monolithic forms prepared with the mixture of phenol and a water-soluble polymer increased from 173-575 m(2)/ml to 451-678 m(2)/ml by the heat treatment. In the case of monolithic forms prepared with the mixture of water-soluble polymers, the surface areas were about twice of those with the mixture of phenol and a water-soluble polymer, while their packing density was in the similar range. The monolithic forms with the mixture of PVP/PVA have high packing density of 0.47 g/ml and high surface area of 2,150 m(2)/g(1,011 m(2)/ml), resulting in high energy density of adsorbed methane gas per volume of 124 v/v.
[References]
  1. Ahouissoussi NBC, Wetzstein ME, Resource Energy Economics, 20, 1, 1997
  2. Alcanix-Monge J, Cass-Lillo MAD, Cazorla-Amoros D, Linares-Solano A, Carbon, 35, 291, 1997
  3. Yang M, Kraft-Oliver T, Yan GX, Min WT, Appl. Energy, 56(3-4), 395, 1997
  4. Sun J, Rood MJ, RostamAbadi M, Lizzio AA, Gas Sep. Purif., 10(2), 91, 1996
  5. Wegrzyn J, Gurevich M, Appl. Energy, 55(2), 71, 1996
  6. Barbosa MJP, Rodrigues AE, Saatdjian E, Tondeur D, Carbon, 35, 9, 1997
  7. Brady TA, RostamAbadi M, Rood MJ, Gas Sep. Purif., 10(2), 97, 1996
  8. Chang KJ, Orhan T, Appl. Thermal Eng., 16, 5, 1996
  9. Burchell TD, "Carbon Materials for Advanced Technologies," Pergamon, 1999
  10. Pendyal B, Johns MM, Marshall WE, Ahmedna M, Rao RM, Bioresour. Technol., 68(3), 247, 1999
  11. Bose T, Chahine R, Arnaud JM, U.S. Patent, 4,999,330, 1991
  12. Frederick SB, Wando SC, U.S. Patent, 5,416,056, 1995
  13. Chang CH, Seminara GJ, Till AE, U.S. Patent, 5,461,023, 1995
  14. Park YT, "Activated Carbon," Dong Wha Ki Sul, 73, 1996
  15. Barton SS, Dacey JR, Quunn DF, "Fundamentals of Adsorption," 1(st) Engineering Foundations Conference, Belfort and Muers, Engineering Foundation, New York, 65, 1983
  16. MacDonald JAF, Quinn DF, Carbon, 34, 9, 1996
  17. Lee BO, Ph.D. Thesis, Chonbuk University, Korea, 1998
  18. Lowell S, Shields JE, "Powder Surface Area and Porosity," 3rd ed., Chapman & Hall, 1991
  19. Kim MS, Hong JC, HWAHAK KONGHAK, 36(6), 913, 1998
  20. Chen XS, Mcenaney B, Mays TJ, Alcaniz-Monge J, Carbon, 35, 9, 1997