Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.39, No.2, 195-198, 2001
미분의 구형 형광체 제조에 있어서 융제 종류의 영향
The Effect of Flux Types on the Preparation of Spherical Fine Phosphor Particles
분무 열분해법에서 다양한 융제의 첨가가 Y2O3 : Eu 형광체 입자의 특성에 미치는 영향에 대해서 알아 보았다. LiCl 및 Na2CO3 융제를 첨가한 용액으로부터 제조된 입자는 융제를 사용하지 않은 입자보다 더 높은 빛 발광 강도를 나타내었다. 직접 제조된 Y2O3 : Eu 입자에 있어서는 5 wt%의 Na2CO3 융제 첨가시 가장 높은 발광 특성을 가졌으며 이는 융제를 첨가하지 않은 경우의 146%에 해당한다. 열처리 과정을 거친 입자의 경우에는 5 wt%의 LiCl 융제를 포함하는 용액으로부터 제조된 입자가 가장 높은 발광특성을 가졌으며, 이는 융제를 첨가하지 않은 경우에 대비해서 37% 만큼 증가하였다. 반면에 H3BO3 융제의 도입은 Y3BO6 불순물 생성으로 인해 형광체의 발광특성을 크게 저하시켰다. 분무 열분해법에서 융제는 형광체의 내부 구조를 치밀하게 하고, 입자의 내부 및 표면에 존재하는 결점들을 제거함으로써 형광체의 발광특성을 향상시켰다.
The effects of various types of fluxes on the photoluminescence[PL] characteristics of Y2O3 : Eu phosphor particles were investigated in the spray pyrolysis. The Y2O3 : Eu particles prepared from solution with LiCl and Na2CO3 flux materials had higher PL intensities than those prepared from solution without flux. In the direct preparation of Y2O3 : Eu phosphor at 900℃, the particles prepared from 5 wt% Na2CO3 flux solution had the highest PL intensity, which was equivalent to 146% of those prepared from solution without flux. In the post-treated Y2O3 : Eu, the particles prepared from 5 wt% LiCl flux solution had the highest PL intensity, which was which was 37% higher than that of particles prepared from solution without flux. However, the addition of 5 wt% H3BO3 flux material decreased the PL intensities of Y2O3 : Eu phosphor particles regardless of post-treatment because the Y3BO6 impurity phase was formed. In spray pyrolysis, flux materials improved the PL intensities of Y2O3 : Eu phosphor particles by densifying the internal structure and eliminating the defects existing inside and surface of particles.
[References]
  1. Sluzky E, Lemoine M, Hesse K, J. Electrochem. Soc., 141(11), 3172, 1994
  2. Maestro P, Huguenin D, Seigneurin A, Deneuve F, Le Lann P, Berar JF, J. Electrochem. Soc., 139(5), 1479, 1992
  3. Kingsley JJ, Suresh K, Patil KC, J. Mater. Sci., 25, 1305, 1990
  4. Kang YC, Park SB, Lenggoro IW, Okuyama K, J. Phys. Chem. Solids, 60(3), 379, 1999
  5. Kang YC, Lenggoro IW, Okuyama K, Park SB, J. Electrochem. Soc., 146(3), 1227, 1999
  6. Kang YC, Lenggoro IW, Okuyama K, Park SB, J. Mater. Res., 14(6), 2611, 1999
  7. Kang YC, Park SB, Lenggoro IW, Okuyama K, J. Electrochem. Soc., 146(7), 2744, 1999
  8. Kang YC, Roh HS, Park SB, Jpn. J. Appl. Phys., 39(1AB), L31, 2000
  9. Roh HS, Kang YC, Park SB, HWAHAK KONGHAK, 38(2), 255, 2000
  10. Kang YC, Roh HS, Park SB, Advan. Mater., submitted.
  11. Ohno K, Abe T, J. Electrochem. Soc., 141(5), 1252, 1994
  12. Oshio S, Matsuoka T, Tanaka S, Kobayashi H, J. Electrochem. Soc., 145(11), 3898, 1998
  13. Kang YC, Roh HS, Park SB, Jpn. J. Appl. Phys., accepted, 39, 2000
  14. Kang YC, Roh HS, Seo DJ, Park SB, J. Mater. Sci. Lett., 19(14), 1225, 2000
  15. Kang YC, Roh HS, Park SB, Jpn. J. Appl. Phys., 39(1AB), 31, 2000
  16. Kang YC, Roh HS, Park SB, J. Electrochem. Soc., 147(4), 1601, 2000