Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.39, No.2, 150-156, 2001
석탄가스전환용 액상 메탄올 제조 공정 비교 연구
A Study on Comparison of Liquid-Phase Methanol Synthesis Processes for Coal-Derived Gas
효율적인 석탄가스 전환용 메탄올 합성 공정을 선택하기 위하여 반응열의 분산이 용이하여 합성가스 일회전환율이 높은 액상 메탄올 합성 공정인 Methyl Formate(MF) 중간체 공정과 LPMEOH 공정을 유망 공정으로 채택하여 두 공정의 반응조건에 따른 반응성 조사를 수행하였다. 두 공정의 반응성 실험결과 두 공정의 촉매 단위 무게당 반응속도는 같은 공간속도에서 MF 중간체 공정이 우수한 것으로 나타났다. 또한 MF 중간체 공정이 50% 이상의 합성가스 일회전환율과 3.7%/일의 비활성화 속도를 보이는 반면, LPMEOH공정은 약 30%의 합성가스 일회전환율과 H2/CO의 비가 1인 합성가스에서 24%/일 이상의 비활성화 속도를 보여 MF 중간체 공정의 우위를 보였다. 또한 반응조건에서도 150-180 ℃의 반응온도와 60기압의 반응압력으로 비교적 온화한 반응 조건을 가지는 MF 중간체 공정이 250 ℃부근의 반응온도를 가지는 LPMEOH 공정보다 우수한 것으로 나타났다. MF 중간체 공정의 약점으로 알려진 CO2에 대한 피독 현상도 일부 극복되어 0.5%의 CO2를 포함하는 합성가스에서도 반응이 진행되어서 MF 중간체 공정이 석탄가스 전환용 액상 메탄올 공정에 적합한 것으로 판명되었다.
Two liquid-phase methanol synthesis processes, the "Methyl Formate Intermediate" process(MF process) and the LPMEOH process, were experimentally investigated to find the suitability of the process for the coal-derived syngas. The MF process showed the superior methanol synthesis rate at the same gas hourly space velocity(GHSV) than LPMEOH process. The MF process showed more than 50% conversion of syngas per pass and 3.7%/day of deactivation rate which are far better than 30% conversion per pass and 24%/day deactivation rate of the LPMEOH process. The reaction condition of the MF process is milder than that of the LPMEOH process. The weakness of the MF process, which is the severe poisoning by small amounts of CO2, was able to be overcome from the experimental result that the reaction proceeded even with the syngas with 0.5% CO2. Overall comparison reveals that MF process is more suitable than the LPMEOH process when the coal-derived syngas is to be used for methanol synthesis.
[References]
  1. Brown DP, Brown DM, Jones WC, Kornosky RM, "The Liquid Phase Methanol(LPMEOH) Process Demonstration at Kingsport," presented at Fifth Annual DOE Clean Coal Technology Conference, Tampa, Florida, 1997
  2. Westerturp KR, Kuczinski M, Hydrocarb. Process., 65(11), 80, 1986
  3. Wainwright MS, "Methane Conversion," ed. by D.M. Bibby, C.D. Chang, R.F. Howe and S. Yurchak, Elsevior, B.V., Amsterdam, 95, 1988
  4. Sleigeir WA, Sapienza R, O'Hare T, Mahajan D, Foran M, Skaperdas G, 9th EPRI Contractors Meeting, Palo Alto, CA, May, 1984
  5. Sapienza RS, Sleigeir WA, O'Hare TE, Mahajan D, U.S. Patent, 4,619,946, 1986
  6. Muhajan D, Mattas L, Proceedings of the 16th Annual EPRI Conference on Fuel Science, Palo Alto, CA, April, 1992
  7. Trimm DL, Wainwright MS, Catal. Today, 6, 261, 1990
  8. Sherwin MS, Frank ME, Hydrocarb. Process., 55(11), 122, 1976
  9. Chem. Week, Oct 25, 41, 1995
  10. Liu Z, Tierney JW, Shah YT, Wender I, Fuel Process. Technol., 23, 149, 1989
  11. Palekar VM, Jung H, Tierney JW, Wender I, Appl. Catal. A: Gen., 102, 14, 1993
  12. Tonner SP, Trimm DL, Wainwright MS, Cant NW, J. Mol. Catal., 18, 215, 1983
  13. Liu Z, Tierney JW, Shah YT, Wender I, Fuel Process. Technol., 18, 185, 1988
  14. Choi SJ, Lee JS, Kim YG, HWAHAK KONGHAK, 32(3), 317, 1994
  15. Evans JW, Casey PS, Wainwright MS, Trimm DL, Cant NW, Appl. Catal., 7, 31, 1983
  16. Monti DM, Kohler MA, Wainwright MS, Trimm DL, Cant NW, Appl. Catal., 22, 123, 1986
  17. Kim YG, Lee JS, Kim JC, Lee SH, Kim KM, HWAHAK KONGHAK, 27(4), 396, 1989
  18. Klier K, Chatikavanij V, Herman RG, Simmons GW, J. Catal., 74, 343, 1982