Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.39, No.2, 138-143, 2001
3성분 혼합 Ru-Sn-Ti/Ti 산화물 전극 활성 및 전극 수명 특성 (II)
Electro-Activity and Life Time Properties of Ru-Sn-Ti Ternary Mixed Oxide/Ti Electrode(II)
본 연구에서는 난분해성 유기물 산화에 사용되는 촉매성 Ru/Ti, Ru-Sn/Ti, Ru-Sn-Ti/Ti 산화물 전극 특성이 전기화학 특성과 전극 수명 관점에서 연구되었다. 전극 활성은 산화물 내의 Ru양에 비례하였으며, 전극제작의 소결 온도가 550 ℃이상에서 급격한 활성의 감소는 산화물 층의 비양론율 감소에 기인된 것이었으며, 전극의 조도는 전극의 활성과 산화물 코팅 횟수에 선형적으로 비례하였다. Ru 산화물 전극의 전극 수명은 소결 온도 450 ℃에서 가장 높으며, Ru-Sn, Ru-Sn-Ti 산화물 전극에서는 소결 온도가 전극 수명에 큰 영향을 주지 않았다. 전극 수명은 산화물 코팅 수에 지수 함수적으로 증가하였다. Ru 산화물 전극에서 Sn과 Ti의 존재는 전극의 수명을 크게 줄이는 역할을 하였다. Ru-Sn-Ti 3성분 산화물 전극에서는 Sn/Ti 비율이 1.5일 때 전극 활성 및 전극 수명이 가장 좋았다.
Catalytic mixed oxide electrodes of Ru/Ti, Ru-Sn/Ti, and Ru-Sn-Ti/Ti effective to destruction of refractory organics in aqueous waste were studied in views of their electrochemical properties and lifetimes. The electrochemical activity of the Ru-based mixed oxide electrode increased almost linearly to the amount of Ru included in the oxide layer, and it decreased rapidly at sintering temperature over 550℃ because of decrease of the degree of non-stochiometry within Ru oxide. The electrode roughness increased linearly with the electrochemical activity and the number of coating layers on electrode. The lifetime of Ru oxide electrode was the longest at the sintering temperature of 450 o C, and the sintering temperature did not affect lifetimes of Ru-Sn and Ru-Sn-Ti oxide electrodes. The lifetime of oxide electrode increased exponentially with the number of coating layers. The existence of Sn and Ti in the Ru-Sn-Ti oxide electrode generally had a bad effect on its lifetime. The electrochemical activity and the lifetime of Ru-Sn-Ti oxide electrode were the best at a specific ratio of Sn to Ti of 1.5.
[References]
  1. Rajeshwar K, Ibanez JG, "Environmental Electrochemistry," Academic press Inc., London, 1997
  2. Scott K, "Electrochemical Process for Clean Technology," The Royal Society of Chemistry, U.K., 1995
  3. Kinoshida K, "Electrochemical Oxygen Technology," John Wiley & Sons, Inc., N.Y., 1992
  4. Trasatti S, "Electrode of Conductive Metallic Oxides," Part A, Elsevier Sci. Pub. Co., Amsterdam, 1980
  5. Trasatti S, Electrochim. Acta, 29(11), 1504, 1984
  6. Comniellis C, Electrochim. Acta, 39(11), 1857, 1994
  7. Boodts JFC, Trasatti S, J. Electrochem. Soc., 137(12), 3784, 1990
  8. Battisti AD, Lodi G, Cappadonia M, Battaglin G, Kotz R, J. Electrochem. Soc., 136(9), 2596, 1989
  9. Krysa J, Kule L, Mraz R, Rousar I, J. Appl. Electrochem., 26(10), 999, 1996
  10. Silva LD, Alves VA, Silva MAPD, Trasatti S, Boots JFC, Can. J. Chem., 75, 1483, 1997
  11. Wen TC, Hu CC, J. Electrochem. Soc., 139(8), 2158, 1992
  12. Kim KW, Lee EH, Kim JS, Choi JG, Shin KH, Lee SH, Kim KH, HWAHAK KONGHAK, 38(6), 774, 2000
  13. Yeo RS, Orehotsky J, visscher W, Srinivasan S, J. Electrochem. Soc., 128(9), 1999, 1981
  14. Lassali TA, Bulhoes LO, Abeid LM, Boodts JF, J. Electrochem. Soc., 144(10), 3348, 1997
  15. Angelinetta C, Trasatti S, Mater. Chem. Phys., 22, 231, 1989
  16. Burke LD, Murrhy OJ, J. Electroanal. Chem., 96, 19, 1979