Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.39, No.1, 91-95, 2001
삼상순환유동층에서 액상의 반경방향 혼합특성
Radial Mixing Characteristics of Liquid Phase in Three-Phase Circulating Fluidized Beds
기체-액체-고체 삼상순환유동층(직경 0.102m×높이 3.5m)의 상승관에서 액상의 반경방향 혼합특성을 고찰하였다. 분산상인 기체로는 건조된 공기를, 연속상인 액상으로는 물을, 그리고 고체입자로는 2.1mm의 유리구를 사용하였다. 기체유속(0.01-0.07), 액체유속(0.25-0.31m/s) 그리고 고체 순환속도(2-8kg/m2s)를 실험변수로 선정하였으며 이들 변수들이 액상의 반경방향 분산계수에 미치는 영향을 고찰하였다. 액상의 반경방향 분산계수는 반경방향의 추적자 농도분포로부터 무한공간모델(infinite space model)을 사용하여 구하였다. 본 연구결과 액상의 반경방향 분산계수는 기체유속과 고체순환속도가 증가함에 따라서 증가하였으나 액체유속이 증가함에 따라서는 감소하였다. 또한 삼상순환유동층 상승관에서 층공극률이 증가함에 따라 액상의 반경방향 분산계수는 감소하였다. 상승관에서의 액상의 반경방향 분산계수는 기체와 액체의 유속 그리고 고체순환속도의 상관식으로 나타낼 수 있었다.
Radial mixing characteristics of liquid phase have been investigated in the riser of a three-phase circulating fluidized bed(0.102m ID×3.5m in height). Compressed air and water have been used as a dispersed gas and a continuous liquid phase, respectively, while glass beads with the diameter of 2.1 mm have been used as a dispersed solid phase. Effects of gas(0.01-0.07) and liquid velocities(0.25-0.31 m/s) and solid circulation rate(2-8 kg/m2s) on the radial dispersion coefficient of liquid phase have been discussed. The radial dispersion coefficient of liquid phase was determined by using the infinite space model from the radial concentration profiles of tracer. As a result of this study, the radial dispersion coefficient of liquid phase has increased with increasing gas velocity and solid circulation rate, however, it has decreased with increasing not only liquid velocity but also bed porosity in the riser of a three-phase circulating fluidized bed. The radial dispersion coefficient has been well correlated in terms of operating variables such as gas and liquid velocities and solid circulation rate.
[References]
  1. Kim SH, Cho YJ, Song PS, Kang Y, Kim SD, HWAHAK KONGHAK, 37(6), 916, 1999
  2. Cho YJ, Song PS, Kim SH, Kang Y, Kim SD, J. Chem. Eng. Jpn., 34(2), 254, 2001
  3. Liang W, Wu Q, Yu Z, Jin Y, Wang Z, Can. J. Chem. Eng., 73(5), 656, 1995
  4. Han S, Zhou J, Jin Y, Loh KC, Wang Z, Chem. Eng. J., 70(1), 9, 1998
  5. Cho YJ, Nam SH, Kang Y, Kim SD, HWAHAK KONGHAK, 38(6), 877, 2000
  6. Klinkenberg AA, Krajenbrinkm HJ, Lauwerier HA, Ind. Eng. Chem., 45, 1202, 1953
  7. Kang Y, Kim SD, Ind. Eng. Chem. Process Des. Dev., 25, 717, 1986
  8. Kang Y, Kim SD, HWAHAK KONGHAK, 24(4), 277, 1986
  9. Kang Y, Lim WM, Kim SD, HWAHAK KONGHAK, 25(5), 460, 1987
  10. Han JH, Kim SD, Chem. Eng. Commun., 94, 9, 1990
  11. El-Temtamy SA, El-Sharnoubi YO, El-Halwagi MM, Chem. Eng. J., 18, 161, 1979
  12. Soon JK, Thomas JF, Ind. Eng. Chem. Fundam., 14, 209, 1975
  13. Kwon HW, Kim SD, Korean J. Chem. Eng., 7(3), 182, 1990
  14. Kim SD, Kim HS, Han JH, Chem. Eng. Sci., 47, 3419, 1992
  15. Kim SD, Kim CH, J. Chem. Eng. Jpn., 16, 172, 1983
  16. Kang Y, Kim SD, HWAHAK KONGHAK, 25(4), 394, 1987