Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.39, No.1, 72-76, 2001
내부순환유동층 반응기에서의 폐타이어 가스화 특성
Gasification Characteristics of Waste Tire in an Internally Circulating Fluidized Bed
오리피스 형태의 드래프트 관을 갖는 내부순환유동층 반응기에서 폐타이어의 가스화 반응을 수행하였다. 대기압하에서 반응온도(750-900℃), 수증기/탄소 비(0.94-1.67), 산소/탄소 비(0.23-0.47)의 변화에 따른 생성가스의 조성, 수율, 발열량, 탄소전환율, cold gas efficiency 등을 측정하였다. 애뉼러스 영역의 생성가스는 21.5-39.2% H2, 3.8-12.2% CO, 34.8-19.6% CO2, 12.5-15.3% CH4, 25.0-15.0% C2H4, 0.4-0.2% C2H6, 1.7-0.1% C3H6의 조성(vol%, N2 free)을 가진다. 애뉼러스 영역의 생성 가스 수율은 0.389-0.490 m3/kg tire, 발열량은 24.5-21.7 MJ/m3, 탄소 전환율은 27.2-34.4%, cold gas efficiency는 46.9-51.6%의 값을 나타내었다.
Waste tire was gasified in an Internally Circulating Fluidized Bed (ICFB) with draft tube(orifice type). The effects of reaction temperature(750-900℃), steam/carbon ratio(0.94-1.67) and oxygen/carbon ratio(0.23-0.47) on composition, gas yield, calorific value, carbon conversion and cold gas efficiency of the product gas have been determined. The product gas in the annulus region contains 21.5-39.2% H2, 3.8-12.2% CO, 34.8-19.6% CO2, 12.5-15.3% CH4, 25.0-15.0% C2H4, 0.4-0.2% C2H6, 1.7-0.1% C3H6(vol%, N2 free basis) with a gas yield of 0.389-0.490 m3/kg-tire, calorific value of 24.5-21.7 MJ/m3, carbon conversion of 27.2-34.4% and the cold gas efficiency of 46.9-51.6%.
[References]
  1. Araki T, Niikawa K, Hosoda H, Nishizaki H, Mitsui S, Endoh K, Yosida K, Conser. Recycling, 3, 155, 1979
  2. Fletcher R, Wilson HT, Resource Rec. Conser., 5, 333, 1981
  3. Lee JS, Ph.D. Dissertation, KAIST, Taejon, Korea, 1996
  4. Raman KP, Walawender WP, Fan LT, Conser. Recycling, 4, 79, 1981
  5. Schulman BL, White PA, ACS Symp. Ser., 76, 274, 1978
  6. Bartok W, Lyon RK, McIntyre AD, Ruth LA, Sommerlad RE, Chem. Eng. Prog., 84, 54, 1988
  7. Kim JR, Lee JS, Kim SD, Energy, 19(8), 845, 1994
  8. Lee JM, Lee JS, Kim JR, Kim SD, Energy, 20(10), 969, 1995
  9. Kaminski W, Sinn H, ACS Symp. Ser., 130, 423, 1980
  10. Zielinski H, Zbraniborski O, Kaczmarzyk G, Del. Tech. Rev., 12, 15, 1979
  11. Gutierrez LA, Watkinson AP, Fuel, 61, 133, 1982
  12. Lee JM, Kim YJ, Lee WJ, Kim SD, Energy, 23(6), 475, 1998
  13. Neogi D, Chang CC, Walawender WP, Fan LT, AIChE J., 32, 17, 1986
  14. Bak YC, Yang HS, Son JE, HWAHAK KONGHAK, 30(1), 80, 1992
  15. Lee JM, Kim YJ, Lee WJ, Kim SD, HWAHAK KONGHAK, 35(1), 121, 1997
  16. Jeon SK, Lee WJ, Kim SD, "Proceedings of the 8th Engineering Foundation Conference on Fluidization," Tours, France, 445, 1995
  17. Kim YJ, Lee JM, Kim SD, Fuel, 76(11), 1067, 1997
  18. Lee JM, Kim YJ, Kim SD, Appl. Thermal Eng., 18, 1013, 1998
  19. Berggren JC, Bjerle I, Eklund H, Karlsson H, Svensson O, Chem. Eng. Sci., 35, 446, 1980
  20. Kim YT, Song BH, Kim SD, Chem. Eng. J., 66, 105, 1997
  21. Kim YJ, Lee JM, Kim SD, Fuel, 79(1), 69, 2000
  22. Lee JM, Kim YJ, Kim SD, HWAHAK KONGHAK, 38(2), 259, 2000
  23. Ahn HS, M.S. Thesis, KAIST, Taejon, Korea, 1995
  24. Kikuchi K, Suzuki A, Mochizuki T, Endo S, Imai E, Tanji Y, Fuel, 64, 368, 1985